拟共形映射与Teichmuller空间

拟共形映射与Teichmuller空间

作者:李忠 著

出版社:北京大学出版社

出版年:2013-09-01

评分:5分

ISBN:9787301230558

所属分类:教辅教材

书刊介绍

拟共形映射与Teichmuller空间 内容简介

本书是为综合大学、高等师范院校数学专业研究生基础课编写的教材,主要讲述拟共形映射与teichmixller空间的基础知识、基本理论及其近代重要进展。全书共分十一章,内容包括:拟共形映射的定义与性质,拟共形映射的存在定理,偏差定理,拟圆周,拟共形映射与单叶函数,riemann曲面上的拟共形映射,闭riemann曲面上的极值问题,riemann曲面的模问题与teichmaller空间,有限型riemann曲面上的teichmiiller空间,bers有界嵌入定理与teichmaller空间的复结构,开riemann曲面上的teichmiiller理论。本书在取材上,更关注teichmiiller理论的基本理论与基本问题的讨论,而不试图涵盖当代全部进展,也不追求问题的“*一般性”。本书注意了材料的自足性与内容上的循序渐进,证明严谨,叙述详实,便于读者自学。本书可作为高等院校数学专业复分析、几何拓扑、几何分析,以及数学物理等研究方向研究生的教材或研究参考书,也可供数学工作者阅读和参考。

拟共形映射与Teichmuller空间 本书特色

李忠著的《拟共形映射与Teichmuller空间》全书共分十一章,内容包括:拟共形映射的定义与性质,拟共形映射的存在定理,偏差定理,拟圆周,拟共形映射与单叶函数,Riemann曲面上的拟共形映射,闭Riemann曲面上的极值问题,Riemann曲面的模问题与Teichmuller空间,有限型Riemann曲面上的Teichmuller空间,Bers有界嵌入定理与Teichmuller空间的复结构,开Riemann曲面上的Teichmuller理论。

拟共形映射与Teichmuller空间 目录


**章 拟共形映射的定义与性质
1拓扑四边形的共形模
1.1拓扑四边形的概念
1.2拓扑四边形的共形等价类
1.3拓扑四边形的共形模
2双连通区域的共形模
2.1双连通区域的典型区域
2.2双连通区域的共形模
3极值长度
3.1极值长度的一般概念
3.2比较原理与合成原理
4极值长度与共形模的关系
4.1 用极值长度描述拓扑四边形的模
4.2 rengel不等式
4.3极值长度中的极值度量
4.4模的单调性与次可加性
4.5模的连续性
4.6双连通域的模与极值长度
5模的极值问题
5.1模的极值问题的提法
5.2 gr6tzsch极值问题
5.3 teichmfiller极值问题
5.4 mori(森)极值问题
5.5函数
6 c1类拟共形映射
……

相关推荐

微信二维码