黎曼曲面导引

黎曼曲面导引

作者:梅加强

出版社:北京大学出版社

出版年:2013-10-01

评分:5分

ISBN:9787301200537

所属分类:教辅教材

书刊介绍

黎曼曲面导引 内容简介

《黎曼曲面导引/北京大学现代数学丛书》介绍黎曼曲面的基本理论.对于一般黎曼曲面主要讨论单值化定理,对于紧致黎曼曲面则主要围绕riemann-roch公式的证明和应用展开讨论。全书共分五章,**章介绍复分析中的一些预备知识并证明riemann映照定理,第二章利用perron方法给出单连通黎曼曲面的分类,即单值化定理,第三章给出riemann-roch公式的经典证明,并讨论这个公式的大量应用,第四章引入全纯线丛,层和层的上同调的概念,并利用这些概念重新将riemann-roch公式解释为一个指标公式.第五章讨论黎曼曲面以及全纯线丛上hermite度量的几何性质,并介绍hodge定理,对偶定理和消没定理.这些定理都可以推广到高维的复流形上.《黎曼曲面导引/北京大学现代数学丛书》结合了几何和分析的观点,语言简洁,内容丰富,适合自学.在引进抽象的概念时,往往辅以许多具体的实例来说明问题.掌握了黎曼曲面上的这些抽象概念以后读者可以自然地过渡到一般复流形的学习,同时,《黎曼曲面导引/北京大学现代数学丛书》可以作为研究复几何和代数几何相关领域的入门读物,

黎曼曲面导引 本书特色

梅加强编著的《黎曼曲面导引》是近若干年来作者在南京大学等地为数学系高年级本科生和研究生讲授黎曼曲面理论而逐渐积累起来的一份讲义。黎曼曲面可以从好几个方面来学习和研究,作者在本书中主要采用几何分析的观点,同时也兼顾较初步的代数方法。本书主要的结果是单值化定理,Riemann-Roch公式及其应用。围绕着这两个主要结果,作者引入了近代几何与拓扑的若干概念。这些概念以及作者所采用的证明方法大多数可以推广到高维的情形,作者的想法是读者可以把本书作为通往复几何甚至代数几何的一个小小阶梯。

黎曼曲面导引 目录

**章 riemann映照定理
§1.1 schwarz引理
§1.2 调和函数
§1.3 riemann映照定理

第二章 单值化定理
§2.1 黎曼曲面的定义
§2.2 poincare引理
§2.3 亚纯函数与亚纯微分
§2.4 perron方法
§2.5 单值化定理

第三章 riemann-roch公式
§3.1 因子
§3.2 hodge定理
§3.3 riemann-roch公式
§3.4 若干应用
§3.5 abel-jacobi定理

第四章 曲面与上同调
§4.1 全纯线丛的定义
§4.2 因子与线丛
§4.3 层和预层
§4.4 层的上同调
§4.5 上同调群的计算
§4.6 euler数

第五章 曲面的复几何
55.1 hermite度量
§5.2 线丛的几何
§5.3 线丛的hodge定理
§5.4 对偶定理
§5.5 消没定理
§5.6 线丛的陈类

附录a 三角剖分和euler数
附录b hodge定理的证明
参考文献
名词索引

黎曼曲面导引 节选

《黎曼曲面导引/北京大学现代数学丛书》介绍黎曼曲面的基本理论.对于一般黎曼曲面主要讨论单值化定理,对于紧致黎曼曲面则主要围绕Riemann-Roch公式的证明和应用展开讨论。全书共分五章,**章介绍复分析中的一些预备知识并证明Riemann映照定理,第二章利用Perron方法给出单连通黎曼曲面的分类,即单值化定理,第三章给出Riemann-Roch公式的经典证明,并讨论这个公式的大量应用,第四章引入全纯线丛,层和层的上同调的概念,并利用这些概念重新将Riemann-Roch公式解释为一个指标公式.第五章讨论黎曼曲面以及全纯线丛上Hermite度量的几何性质,并介绍Hodge定理,对偶定理和消没定理.这些定理都可以推广到高维的复流形上.
《黎曼曲面导引/北京大学现代数学丛书》结合了几何和分析的观点,语言简洁,内容丰富,适合自学.在引进抽象的概念时,往往辅以许多具体的实例来说明问题.掌握了黎曼曲面上的这些抽象概念以后读者可以自然地过渡到一般复流形的学习,同时,《黎曼曲面导引/北京大学现代数学丛书》可以作为研究复几何和代数几何相关领域的入门读物,

相关推荐

微信二维码