数学建模方法与分析(原书第4版)

数学建模方法与分析(原书第4版)

作者:[美] Mark M. Meerschaert

出版社:机械工业出版社

出版年:2015-1-1

评分:8.0

ISBN:9787111485698

所属分类:教辅教材

书刊介绍

内容简介

Mark M. Meerschaert,美国密歇根州立大学概率统计系教授。曾在密歇根大学、英格兰学院、内华达大学、新西兰达尼丁Otago大学执教,讲授过数学建模、概率、统计学、运筹学、偏微分方程、地下水及地表水水文学与统计物理学课程。当前的研究方向包括无限方差概率模型的极限定理和参数估计、金融数学中的厚尾模型、用厚尾模型及周期协方差结构建模河水流、医学成像、异常扩散、连续时间随机游动、分数阶导数和分数阶偏微分方程、地下水流及运输。

作品目录

译者序
前言
第一部分 最优化模型
第1章 单变量最优化
1.1 五步方法
1.2 灵敏性分析
1.3 灵敏性与稳健性
1.4 习题
1.5 进一步阅读文献
第2章 多变量最优化
2.1 无约束最优化
2.2 拉格朗日乘子
2.3 灵敏性分析与影子价格
2.4 习题
2.5 进一步阅读文献
第3章 最优化计算方法
3.1 单变量最优化
3.2 多变量最优化
3.3 线性规划
3.4 离散最优化
3.5 习题
3.6 进一步阅读文献
第二部分 动态模型
第4章 动态模型介绍
4.1 定常态分析
4.2 动力系统
4.3 离散时间的动力系统
4.4 习题
4.5 进一步阅读文献
第5章 动态模型分析
5.1 特征值方法
5.2 离散系统的特征值方法
5.3 相图
5.4 习题
5.5 进一步阅读文献
第6章 动态模型的模拟
6.1 模拟简介
6.2 连续时间模型
6.3 欧拉方法
6.4 混沌与分形
6.5 习题
6.6 进一步阅读文献
第三部分 概率模型
第7章 概率模型简介
7.1 离散概率模型
7.2 连续概率模型
7.3 统计学简介
7.4 扩散
7.5 习题
7.6 进一步阅读文献
第8章 随机模型
8.1 马尔可夫链
8.2 马尔可夫过程
8.3 线性回归
8.4 时间序列
8.5 习题
8.6 进一步阅读文献
第9章 概率模型的模拟
9.1 蒙特卡罗模拟
9.2 马尔可夫性质
9.3 解析模拟
9.4 粒子追踪
9.5 分数阶扩散
9.6 习题
9.7 进一步阅读文献
后记
索引
· · · · · ·

作者简介

Mark M. Meerschaert,美国密歇根州立大学概率统计系教授。曾在密歇根大学、英格兰学院、内华达大学、新西兰达尼丁Otago大学执教,讲授过数学建模、概率、统计学、运筹学、偏微分方程、地下水及地表水水文学与统计物理学课程。当前的研究方向包括无限方差概率模型的极限定理和参数估计、金融数学中的厚尾模型、用厚尾模型及周期协方差结构建模河水流、医学成像、异常扩散、连续时间随机游动、分数阶导数和分数阶偏微分方程、地下水流及运输。

精彩摘录

但现在假设猪的价格保持稳定.

——引自第241页


……这时如果出现某一种群灭绝的情况,是否还会是最优解?

——引自第241页

相关推荐

微信二维码