AI制胜:机器学习极简入门

AI制胜:机器学习极简入门

作者:宋立桓

出版社:清华大学

出版年:2020年6月

ISBN:9787302555513

所属分类:散文随笔

书刊介绍

《AI制胜:机器学习极简入门》内容简介

为了避免机器学习背后的复杂数学原理以及异常复杂的算法证明和推导吓退一大批初学者,本书遵循“极简入门”的理念,通过通俗易懂的语言,丰富的图示和经典的案例,有效地降低了学习的门槛,让广大机器学习爱好者轻松入门机器学习。
本书共分11章,覆盖的主要内容有机器学习概述、数据预处理、K最近邻算法、回归算法、决策树、K-means聚类算法、随机森林、朴素贝叶斯算法、支持向量机SVM、神经网络(卷积神经网络、Keras深度学习框架)和人脸识别入门等。从最简单的常识来切入AI领域,打造无缝平滑的学习体验。
本书的读者不需要具有高等数学的深厚知识,也不需要有机器学习或者人工智能(AI)的基础,只需具备Python语言的基础知识和简单了解过NumPy、Pandas等科学基础库,就可以轻松阅读并掌握。另外,高等院校和培训机构也可以将此书作为机器学习入门教材使用。
宋立桓,IT资深技术专家、布道师,主要负责为企业客户提供顾问咨询、培训和方案设计服务。目前是腾讯云架构师,专注于云计算、大数据和人工智能,对区块链的相关技术也有深入的研究。著有图书《Cloudera Hadoop大数据平台实战指南》《MySQL性能优化和高可用架构实践》。

作品目录

作者简介
内容简介
推荐序一
推荐序二
前言
第1章:机器学习概述
1.1、什么是机器学习
1.2、机器学习的流程
1.3、机器学习该如何学
1.4、机器学习分类
1.5、过拟合和欠拟合
1.6、衡量机器学习模型的指标
第2章:机器学习中的数据预处理
2.1、数据预处理的重要性和原则
2.2、数据预处理方法介绍
2.3、数据降维
第3章:k最近邻算法
3.1、k最近邻算法的原理
3.2、k最近邻算法过程详解
3.3、kNN算法的注意事项
3.4、k最近邻算法案例分享
3.5、kNN算法优缺点
第4章:回归算法
4.1、线性回归
4.2、线性回归案例实战
4.3、逻辑回归
4.4、回归算法总结和优缺点
第5章:决策树
5.1、决策树概念
5.2、信息熵
5.3、信息增益与信息增益比
5.4、基尼系数
5.5、过拟合与剪枝
5.6、决策树算法案例实战——预测患者佩戴隐形眼镜类型
5.7、决策树算法实战案例——电影喜好预测
5.8、总结
第6章:K-means聚类算法
6.1、何为聚类
6.2、K-means算法思想和原理
6.3、K-means算法涉及的参数和优缺点
6.4、K-means应用场景
6.5、K-means聚类算法实现鸢尾花数据的聚类
6.6、K-means算法实现客户价值分析
6.7、K-means算法实现对亚洲足球队做聚类
第7章:随机森林
7.1、随机森林概述
7.2、随机森林实战——红酒数据集案例
7.3、随机森林算法实战——泰坦尼克号生存预测
第8章:朴素贝叶斯算法
8.1、朴素贝叶斯算法概念和原理
8.2、贝叶斯算法实战案例——曲奇饼
8.3、贝叶斯算法案例实战——单词拼写纠错
8.4、贝叶斯算法案例实战——识别中文垃圾邮件
8.5、贝叶斯算法案例实战——鸢尾花分类预测
第9章:支持向量机SVM
9.1、支持向量机概述
9.2、工作原理
9.3、SVM的核函数选择和参数的调整
9.4、SVM算法案例实战——波士顿房价分析
9.5、SVM算法案例实战——鸢尾花分类
9.6、SVM算法优缺点
第10章:神经网络
10.1、神经网络概念
10.2、卷积神经网络(CNN)
10.3、用Python实现自己的神经网络案例
10.4、多层神经网络基于sklearn的实现案例
10.5、使用Keras框架实现神经网络案例
第11章:人脸识别入门实践
11.1、人脸识别简介
11.2、人脸检测和关键点定位实战
11.3、人脸表情分析——情绪识别实战
11.4、我能认识你——人脸识别实战

相关推荐

微信二维码