内容简介
Stuart Russell,1986年进入加利福尼亚大学伯克利分校,任计算机科学系教授,曾担任系主任、人类兼容人工智能中心主任,也是史密斯–扎德(Smith-Zadeh)工程系讲席教授。1990年,获得了美国国家科学基金会(NSF)杰出青年科学家总统奖;1995年,成为计算机与思想奖的获奖人之一。美国人工智能协会(AAAI)、美国计算机协会(ACM)和美国科学促进协会的会士,牛津大学瓦德汉学院的荣誉院士和安德鲁·卡内基(Andrew Carnegie)院士。2012年到2014年,在巴黎担任布莱斯·帕斯卡(Blaise Pascal)主席。在人工智能领域发表了300多篇论文,涉及范围广泛。
Peter Norvig,曾任谷歌公司的研究总监、核心网络搜索算法的负责人。曾与他人合作共同教授了一门有16万名学生注册的在线人工智能课程,帮助开启了当下的大规...
()
作品目录
第一部分 人工智能基础
第 1 章 绪论 2
1.1 什么是人工智能 2
1.1.1 类人行为:图灵测试方法 3
1.1.2 类人思考:认知建模方法 3
1.1.3 理性思考:“思维法则”方法 4
1.1.4 理性行为:理性智能体方法 4
1.1.5 益机 5
1.2 人工智能的基础 6
1.2.1 哲学 6
1.2.2 数学 8
1.2.3 经济学 9
1.2.4 神经科学 10
1.2.5 心理学 12
1.2.6 计算机工程 13
1.2.7 控制理论与控制论 14
1.2.8 语言学 15
1.3 人工智能的历史 16
1.3.1 人工智能的诞生(1943—1956) 16
1.3.2 早期热情高涨,期望无限(1952—1969) 17
1.3.3 一些现实(1966—1973) 19
1.3.4 专家系统(1969—1986) 20
1.3.5 神经网络的回归(1986—现在) 22
1.3.6 概率推理和机器学习(1987—现在) 22
1.3.7 大数据(2001—现在) 23
1.3.8 深度学习(2011—现在) 24
1.4 目前的先进技术 24
1.5 人工智能的风险和收益 27
小结 30
参考文献与历史注释 31
第 2 章 智能体 32
2.1 智能体和环境 32
2.2 良好行为:理性的概念 34
2.2.1 性能度量 34
2.2.2 理性 35
2.2.3 全知、学习和自主 36
2.3 环境的本质 37
2.3.1 指定任务环境 37
2.3.2 任务环境的属性 38
2.4 智能体的结构 41
2.4.1 智能体程序 41
2.4.2 简单反射型智能体 42
2.4.3 基于模型的反射型智能体 44
2.4.4 基于目标的智能体 45
2.4.5 基于效用的智能体 46
2.4.6 学习型智能体 47
2.4.7 智能体程序的组件如何工作 49
小结 50
参考文献与历史注释 51
第二部分 问题求解
第 3 章 通过搜索进行问题求解 54
3.1 问题求解智能体 54
3.1.1 搜索问题和解 55
3.1.2 问题形式化 56
3.2 问题示例 57
3.2.1 标准化问题 57
3.2.2 真实世界问题 59
3.3 搜索算法 61
3.3.1 最佳优先搜索 62
3.3.2 搜索数据结构 63
3.3.3 冗余路径 64
3.3.4 问题求解性能评估 65
3.4 无信息搜索策略 65
3.4.1 广度优先搜索 66
3.4.2 Dijkstra 算法或一致代价搜索 67
3.4.3 深度优先搜索与内存问题 68
3.4.4 深度受限和迭代加深搜索 69
3.4.5 双向搜索 712
3.4.6 无信息搜索算法对比 72
3.5 有信息(启发式)搜索策略 73
3.5.1 贪心最佳优先搜索 73
3.5.2 A* 搜索 75
3.5.3 搜索等值线 77
3.5.4 满意搜索:不可容许的启发式
函数与加权 A* 搜索 79
3.5.5 内存受限搜索 80
3.5.6 双向启发式搜索 83
3.6 启发式函数 85
3.6.1 启发式函数的准确性对性能的影响 85
3.6.2 从松弛问题出发生成启发式函数 86
3.6.3 从子问题出发生成启发式函数:模式数据库 87
3.6.4 使用地标生成启发式函数 88
3.6.5 学习以更好地搜索 90
3.6.6 从经验中学习启发式函数 90
小结 90
参考文献与历史注释 92
第 4 章 复杂环境中的搜索 95
4.1 局部搜索和最优化问题 95
4.1.1 爬山搜索 96
4.1.2 模拟退火 98
4.1.3 局部束搜索 99
4.1.4 进化算法 99
4.2 连续空间中的局部搜索 102
4.3 使用非确定性动作的搜索 104
4.3.1 不稳定的真空吸尘器世界 105
4.3.2 与或搜索树 106
4.3.3 反复尝试 107
4.4 部分可观测环境中的搜索 108
4.4.1 无观测信息的搜索 108
4.4.2 部分可观测环境中的搜索 111
4.4.3 求解部分可观测问题 112
4.4.4 部分可观测环境中的智能体 113
4.5 在线搜索智能体和未知环境 115
4.5.1 在线搜索问题 115
4.5.2 在线搜索智能体 117
4.5.3 在线局部搜索 118
4.5.4 在线搜索中的学习 119
小结 120
参考文献与历史注释 121
第 5 章 对抗搜索和博弈 124
5.1 博弈论 124
5.2 博弈中的优化决策 126
5.2.1 极小化极大搜索算法 127
5.2.2 多人博弈中的最优决策 128
5.2.3 α-β 剪枝 129
5.2.4 移动顺序 131
5.3 启发式 α-β 树搜索 132
5.3.1 评价函数 132
5.3.2 截断搜索 134
5.3.3 前向剪枝 135
5.3.4 搜索和查表 136
5.4 蒙特卡罗树搜索 136
5.5 随机博弈 139
5.6 部分可观测博弈 142
5.6.1 四国军棋:部分可观测的国际象棋 142
5.6.2 纸牌游戏 144
5.7 博弈搜索算法的局限性 146
小结 147
参考文献与历史注释 148
第 6 章 约束满足问题 152
6.1 定义约束满足问题 152
6.1.1 问题示例:地图着色 153
6.1.2 问题示例:车间作业调度 154
6.1.3 CSP 形式体系的变体 155
6.2 约束传播:CSP 中的推断 156
6.2.1 节点一致性 157
6.2.2 弧一致性 157
6.2.3 路径一致性 158
6.2.4 k 一致性 158
6.2.5 全局约束 159
6.2.6 数独 160
6.3 CSP 的回溯搜索 161
6.3.1 变量排序和值排序 163
6.3.2 交替进行搜索和推理 164
6.3.3 智能回溯:向后看 164
6.3.4 约束学习 166
6.4 CSP 的局部搜索 166
6.5 问题的结构 168
6.5.1 割集调整 169
6.5.2 树分解 170
6.5.3 值对称 171
小结 171
参考文献与历史注释 172
第三部分 知识、推理和规划
第 7 章 逻辑智能体 176
7.1 基于知识的智能体 176
7.2 wumpus 世界 178
7.3 逻辑 180
7.4 命题逻辑:一种非常简单的逻辑 183
7.4.1 语法 183
7.4.2 语义 184
7.4.3 一个简单的知识库 185
7.4.4 一个简单的推断过程 186
7.5 命题定理证明 187
7.5.1 推断与证明 188
7.5.2 通过归结证明 190
7.5.3 霍恩子句与确定子句 194
7.5.4 前向链接与反向链接 194
7.6 高效命题模型检验 196
7.6.1 完备的回溯算法 196
7.6.2 局部搜索算法 198
7.6.3 随机 SAT 问题概览 199
7.7 基于命题逻辑的智能体 200
7.7.1 世界的当前状态 200
7.7.2 混合智能体 203
7.7.3 逻辑状态估计 204
7.7.4 用命题推断进行规划 205
小结 207
参考文献与历史注释 208
第 8 章 一阶逻辑 211
8.1 回顾表示 211
8.1.1 思想的语言 212
8.1.2 结合形式语言和自然语言的优点 213
8.2 一阶逻辑的语法和语义 215
8.2.1 一阶逻辑模型 215
8.2.2 符号与解释 216
8.2.3 项 218
8.2.4 原子语句 218
8.2.5 复合语句 218
8.2.6 量词 219
8.2.7 等词 222
8.2.8 数据库语义 222
8.3 使用一阶逻辑 223
8.3.1 一阶逻辑的断言与查询 223
8.3.2 亲属关系论域 224
8.3.3 数、集合与列表 225
8.3.4 wumpus 世界 227
8.4 一阶逻辑中的知识工程 228
8.4.1 知识工程的过程 229
8.4.2 电子电路论域 230
小结 233
参考文献与历史注释 234
第 9 章 一阶逻辑中的推断 236
9.1 命题推断与一阶推断 236
9.2 合一与一阶推断 238
9.2.1 合一 239
9.2.2 存储与检索 240
9.3 前向链接 241
9.3.1 一阶确定子句 242
9.3.2 简单的前向链接算法 242
9.3.3 高效前向链接 244
9.4 反向链接 247
9.4.1 反向链接算法 247
9.4.2 逻辑编程 248
9.4.3 冗余推断和无限循环 249
9.4.4 Prolog 的数据库语义 251
9.4.5 约束逻辑编程 251
9.5 归结 252
9.5.1 一阶逻辑的合取范式 252
9.5.2 归结推断规则 253
9.5.3 证明范例 254
9.5.4 归结的完备性 256
9.5.5 等词 258
9.5.6 归结策略 260
小结 261
参考文献与历史注释 262
第 10 章 知识表示 265
10.1 本体论工程 265
10.2 类别与对象 267
10.2.1 物理组成 268
10.2.2 量度 269
10.2.3 对象:事物和物质 271
10.3 事件 272
10.3.1 时间 273
10.3.2 流和对象 275
10.4 精神对象和模态逻辑 275
10.5 类别的推理系统 278
10.5.1 语义网络 278
10.5.2 描述逻辑 280
10.6 用缺省信息推理 281
10.6.1 限定与缺省逻辑 281
10.6.2 真值维护系统 283
小结 284
参考文献与历史注释 285
第 11 章 自动规划 290
11.1 经典规划的定义 290
11.1.1 范例领域:航空货物运输 291
11.1.2 范例领域:备用轮胎问题 292
11.1.3 范例领域:积木世界 292
11.2 经典规划的算法 294
11.2.1 规划的前向状态空间搜索 294
11.2.2 规划的反向状态空间搜索 295
11.2.3 使用布尔可满足性规划 296
11.2.4 其他经典规划方法 296
11.3 规划的启发式方法 297
11.3.1 领域无关剪枝 299
11.3.2 规划中的状态抽象 300
11.4 分层规划 300
11.4.1 高层动作 301
11.4.2 搜索基元解 302
11.4.3 搜索抽象解 303
11.5 非确定性域的规划和行动 307
11.5.1 无传感器规划 309
11.5.2 应变规划 312
11.5.3 在线规划 313
11.6 时间、调度和资源 315
11.6.1 时间约束和资源约束的表示 315
11.6.2 解决调度问题 316
11.7 规划方法分析 318
小结 319
参考文献与历史注释 320
第四部分 不确定知识和不确定推理
第 12 章 不确定性的量化 326
12.1 不确定性下的动作 326
12.1.1 不确定性概述 327
12.1.2 不确定性与理性决策 328
12.2 基本概率记号 329
12.2.1 概率是关于什么的 329
12.2.2 概率断言中的命题语言 330
12.2.3 概率公理及其合理性 333
12.3 使用完全联合分布进行推断 334
12.4 独立性 336
12.5 贝叶斯法则及其应用 337
12.5.1 应用贝叶斯法则:简单实例 338
12.5.2 应用贝叶斯法则:合并证据 339
12.6 朴素贝叶斯模型 340
12.7 重游 wumpus 世界 342
小结 344
参考文献与历史注释 345
第 13 章 概率推理 348
13.1 不确定域的知识表示 348
13.2 贝叶斯网络的语义 350
13.2.1 贝叶斯网络中的条件独立性关系 353
13.2.2 条件分布的高效表示 354
13.2.3 连续变量的贝叶斯网络 356
13.2.4 案例研究:汽车保险 358
13.3 贝叶斯网络中的精确推断 360
13.3.1 通过枚举进行推断 361
13.3.2 变量消元算法 363
13.3.3 精确推断的复杂性 365
13.3.4 聚类算法 366
13.4 贝叶斯网络中的近似推理 367
13.4.1 直接采样方法 368
13.4.2 通过马尔可夫链模拟进行推断 372
13.4.3 编译近似推断 378
13.5 因果网络 379
13.5.1 表示动作:do 操作 380
13.5.2 后门准则 382
小结 382
参考文献与历史注释 383
第 14 章 时间上的概率推理 388
14.1 时间与不确定性 388
14.1.1 状态与观测 389
14.1.2 转移模型与传感器模型 389
14.2 时序模型中的推断 391
14.2.1 滤波与预测 392
14.2.2 平滑 394
14.2.3 寻找最可能序列 396
14.3 隐马尔可夫模型 398
14.3.1 简化矩阵算法 398
14.3.2 隐马尔可夫模型示例:定位 400
14.4 卡尔曼滤波器 403
14.4.1 更新高斯分布 403
14.4.2 简单的一维示例 404
14.4.3 一般情况 406
14.4.4 卡尔曼滤波的适用范围 407
14.5 动态贝叶斯网络 408
14.5.1 构建动态贝叶斯网络 409
14.5.2 动态贝叶斯网络中的精确推断 412
14.5.3 动态贝叶斯网络中的近似推断 413
小结 417
参考文献与历史注释 418
第 15 章 概率编程 421
15.1 关系概率模型 421
15.1.1 语法与语义 423
15.1.2 实例:评定玩家的技能等级 425
15.1.3 关系概率模型中的推断 426
15.2 开宇宙概率模型 427
15.2.1 语义与语法 428
15.2.2 开宇宙概率模型的推断 429
15.2.3 示例 430
15.3 追踪复杂世界 433
15.3.1 示例:多目标跟踪 433
15.3.2 示例:交通监控 436
15.4 作为概率模型的程序 436
15.4.1 示例:文本阅读 437
15.4.2 语法与语义 438
15.4.3 推断结果 438
15.4.4 结合马尔可夫模型改进生成程序 439
15.4.5 生成程序的推断 439
小结 440
参考文献与历史注释 440
第 16 章 做简单决策 444
16.1 在不确定性下结合信念与愿望 444
16.2 效用理论基础 445
16.2.1 理性偏好的约束 445
16.2.2 理性偏好导致效用 447
16.3 效用函数 448
16.3.1 效用评估和效用尺度 448
16.3.2 金钱的效用 449
16.3.3 期望效用与决策后失望 451
16.3.4 人类判断与非理性 452
16.4 多属性效用函数 454
16.4.1 占优 455
16.4.2 偏好结构与多属性效用 456
16.5 决策网络 458
16.5.1 使用决策网络表示决策问题 458
16.5.2 评估决策网络 460
16.6 信息价值 460
16.6.1 简单示例 460
16.6.2 完美信息的一般公式 461
16.6.3 价值信息的性质 462
16.6.4 信息收集智能体的实现 463
16.6.5 非短视信息收集 463
16.6.6 敏感性分析与健壮决策 464
16.7 未知偏好 465
16.7.1 个人偏好的不确定性 466
16.7.2 顺从人类 467
小结 468
参考文献与历史注释 469
第 17 章 做复杂决策 473
17.1 序贯决策问题 473
17.1.1 时间上的效用 475
17.1.2 最优策略与状态效用 477
17.1.3 奖励规模 479
17.1.4 表示 MDP 480
17.2 MDP 的算法 482
17.2.1 价值迭代 482
17.2.2 策略迭代 485
17.2.3 线性规划 487
17.2.4 MDP 的在线算法 487
17.3 老虎机问题 489
17.3.1 计算基廷斯指数 491
17.3.2 伯努利老虎机 492
17.3.3 近似最优老虎机策略 493
17.3.4 不可索引变体 493
17.4 部分可观测MDP 495
17.5 求解POMDP 的算法 497
17.5.1 POMDP的价值迭代 497
17.5.2 POMDP的在线算法 500
小结 501
参考文献与历史注释 502
第 18 章 多智能体决策 505
18.1 多智能体环境的特性 505
18.1.1 单个决策者 505
18.1.2 多决策者 506
18.1.3 多智能体规划 507
18.1.4 多智能体规划:合作与协调 509
18.2 非合作博弈论 510
18.2.1 单步博弈:正则形式博弈 510
18.2.2 社会福利 513
18.2.3 重复博弈 517
18.2.4 序贯博弈:扩展形式 520
18.2.5 不确定收益与辅助博弈 525
18.3 合作博弈论 527
18.3.1 联盟结构与结果 528
18.3.2 合作博弈中的策略 529
18.3.3 合作博弈中的计算 531
18.4 制定集体决策 533
18.4.1 在合同网中分配任务 533
18.4.2 通过拍卖分配稀缺资源 535
18.4.3 投票 539
18.4.4 议价 541
小结 544
参考文献与历史注释 545
第五部分 机器学习
第 19 章 样例学习 550
19.1 学习的形式 550
19.2 监督学习 552
19.3 决策树学习 555
19.3.1 决策树的表达能力 556
19.3.2 从样例中学习决策树 557
19.3.3 选择测试属性 559
19.3.4 泛化与过拟合 560
19.3.5 拓展决策树的适用范围 562
19.4 模型选择与模型优化 563
19.4.1 模型选择 564
19.4.2 从错误率到损失函数 566
19.4.3 正则化 567
19.4.4 超参数调整 568
19.5 学习理论 569
19.6 线性回归与分类 572
19.6.1 单变量线性回归 572
19.6.2 梯度下降 574
19.6.3 多变量线性回归 575
19.6.4 带有硬阈值的线性分类器 577
19.6.5 基于逻辑斯谛回归的线性分类器 579
19.7 非参数模型 581
19.7.1 最近邻模型 581
19.7.2 使用 k-d 树寻找最近邻 583
19.7.3 局部敏感哈希 584
19.7.4 非参数回归 585
19.7.5 支持向量机 586
19.7.6 核技巧 589
19.8 集成学习 589
19.8.1 自助聚合法 590
19.8.2 随机森林法 590
19.8.3 堆叠法 591
19.8.4 自适应提升法 592
19.8.5 梯度提升法 594
19.8.6 在线学习 595
19.9 开发机器学习系统 596
19.9.1 问题形式化 596
19.9.2 数据收集、评估和管理 597
19.9.3 模型选择与训练 601
19.9.4 信任、可解释性、可说明性 601
19.9.5 操作、监控和维护 603
小结 604
参考文献与历史注释 605
第 20 章 概率模型学习 610
20.1 统计学习 610
20.2 完全数据学习 613
20.2.1 最大似然参数学习:离散模型 613
20.2.2 朴素贝叶斯模型 615
20.2.3 生成模型和判别模型 616
20.2.4 最大似然参数学习:连续模型 616
20.2.5 贝叶斯参数学习 618
20.2.6 贝叶斯线性回归 620
20.2.7 贝叶斯网络结构学习 622
20.2.8 非参数模型密度估计 623
20.3 隐变量学习:EM 算法 624
20.3.1 无监督聚类:学习混合高斯 625
20.3.2 学习带隐变量的贝叶斯网络参数值 627
20.3.3 学习隐马尔可夫模型 630
20.3.4 EM 算法的一般形式 630
20.3.5 学习带隐变量的贝叶斯网络结构 631
小结 632
参考文献与历史注释 632
第 21 章 深度学习 635
21.1 简单前馈网络 636
21.1.1 网络作为复杂函数 636
21.1.2 梯度与学习 639
21.2 深度学习的计算图 640
21.2.1 输入编码 641
21.2.2 输出层与损失函数 641
21.2.3 隐藏层 642
21.3 卷积网络 643
21.3.1 池化与下采样 646
21.3.2 卷积神经网络的张量运算 646
21.3.3 残差网络 647
21.4 学习算法 648
21.4.1 计算图中的梯度计算 649
21.4.2 批量归一化 650
21.5 泛化 650
21.5.1 选择正确的网络架构 651
21.5.2 神经架构搜索 652
21.5.3 权重衰减 653
21.5.4 暂退法 653
21.6 循环神经网络 654
21.6.1 训练基本的循环神经网络 655
21.6.2 长短期记忆 RNN 656
21.7 无监督学习与迁移学习 657
21.7.1 无监督学习 657
21.7.2 迁移学习和多任务学习 661
21.8 应用 662
21.8.1 视觉 662
21.8.2 自然语言处理 663
21.8.3 强化学习 663
小结 664
参考文献与历史注释 664
第 22 章 强化学习 668
22.1 从奖励中学习 668
22.2 被动强化学习 670
22.2.1 直接效用估计 671
22.2.2 自适应动态规划 671
22.2.3 时序差分学习 672
22.3 主动强化学习 674
22.3.1 探索 675
22.3.2 安全探索 677
22.3.3 时序差分 Q 学习 678
22.4 强化学习中的泛化 680
22.4.1 近似直接效用估计 680
22.4.2 近似时序差分学习 681
22.4.3 深度强化学习 682
22.4.4 奖励函数设计 683
22.4.5 分层强化学习 683
22.5 策略搜索 686
22.6 学徒学习与逆强化学习 688
22.7 强化学习的应用 690
22.7.1 在电子游戏中的应用 690
22.7.2 在机器人控制中的应用 691
小结 692
参考文献与历史注释 693
第六部分 沟通、感知和行动
第 23 章 自然语言处理 698
23.1 语言模型 698
23.1.1 词袋模型 699
23.1.2 n 元单词模型 700
23.1.3 其他 n 元模型 701
23.1.4 n 元模型的平滑 701
23.1.5 单词表示 702
23.1.6 词性标注 703
23.1.7 语言模型的比较 706
23.2 文法 707
23.3 句法分析 709
23.3.1 依存分析 711
23.3.2 从样例中学习句法分析器 712
23.4 扩展文法 713
23.4.1 语义解释 715
23.4.2 学习语义文法 717
23.5 真实自然语言的复杂性 717
23.6 自然语言任务 720
小结 722
参考文献与历史注释 722
第 24 章 自然语言处理中的深度学习 727
24.1 词嵌入 727
24.2 自然语言处理中的循环神经网络 730
24.2.1 使用循环神经网络的语言模型 730
24.2.2 用循环神经网络进行分类 732
24.2.3 自然语言处理任务中的 LSTM模型 733
24.3 序列到序列模型 733
24.3.1 注意力 735
24.3.2 解码 736
24.4 Transformer 架构 737
24.4.1 自注意力 737
24.4.2 从自注意力到 Transformer 738
24.5 预训练和迁移学习 739
24.5.1 预训练词嵌入 740
24.5.2 预训练上下文表示 741
24.5.3 掩码语言模型 742
24.6 最高水平(SOTA) 742
小结 745
参考文献与历史注释 745
第 25 章 计算机视觉 748
25.1 引言 748
25.2 图像形成 749
25.2.1 无透镜成像:针孔照相机 749
25.2.2 透镜系统 751
25.2.3 缩放正交投影 752
25.2.4 光线与明暗 752
25.2.5 颜色 753
25.3 简单图像特征 754
25.3.1 边缘 755
25.3.2 纹理 757
25.3.3 光流 758
25.3.4 自然图像分割 759
25.4 图像分类 760
25.4.1 基于卷积神经网络的图像分类 761
25.4.2 卷积神经网络对图像分类问题
有效的原因 762
25.5 物体检测 763
25.6 三维世界 766
25.6.1 多个视图下的三维线索 766
25.6.2 双目立体视觉 766
25.6.3 移动摄像机给出的三维线索 768
25.6.4 单个视图的三维线索 769
25.7 计算机视觉的应用 769
25.7.1 理解人类行为 770
25.7.2 匹配图片与文字 772
25.7.3 多视图重建 773
25.7.4 单视图中的几何 774
25.7.5 生成图片 775
25.7.6 利用视觉控制运动 778
小结 780
参考文献与历史注释 781
第 26 章 机器人学 785
26.1 机器人 785
26.2 机器人硬件 786
26.2.1 机器人的硬件层面分类 786
26.2.2 感知世界 787
26.2.3 产生运动 789
26.3 机器人学解决哪些问题 789
26.4 机器人感知 790
26.4.1 定位与地图构建 791
26.4.2 其他感知类型 795
26.4.3 机器人感知中的监督学习与无监督学习 795
26.5 规划与控制 796
26.5.1 构形空间 796
26.5.2 运动规划 799
26.5.3 轨迹跟踪控制 806
26.5.4 最优控制 809
26.6 规划不确定的运动 810
26.7 机器人学中的强化学习 812
26.7.1 利用模型 812
26.7.2 利用其他信息 813
26.8 人类与机器人 814
26.8.1 协调 814
26.8.2 学习做人类期望的事情 817
26.9 其他机器人框架 820
26.9.1 反应式控制器 820
26.9.2 包容架构 821
26.10 应用领域 822
小结 825
参考文献与历史注释 826
第七部分 总结
第 27 章 人工智能的哲学、伦理和安全性 832
27.1 人工智能的极限 832
27.1.1 由非形式化得出的论据 832
27.1.2 由能力缺陷得出的论据 833
27.1.3 数学异议 833
27.1.4 衡量人工智能 834
27.2 机器能真正地思考吗 835
27.2.1 中文房间 835
27.2.2 意识与感质 836
27.3 人工智能的伦理 836
27.3.1 致命性自主武器 837
27.3.2 监控、安全与隐私 839
27.3.3 公平与偏见 841
27.3.4 信任与透明度 844
27.3.5 工作前景 845
27.3.6 机器人权利 847
27.3.7 人工智能安全性 848
小结 851
参考文献与历史注释 852
第 28 章 人工智能的未来 857
28.1 人工智能组件 857
28.2 人工智能架构 862
附录 A 数学背景知识 865
附录 B 关于语言与算法的说明 871
参考文献 873
· · · · · ·
作者简介
Stuart Russell,1986年进入加利福尼亚大学伯克利分校,任计算机科学系教授,曾担任系主任、人类兼容人工智能中心主任,也是史密斯–扎德(Smith-Zadeh)工程系讲席教授。1990年,获得了美国国家科学基金会(NSF)杰出青年科学家总统奖;1995年,成为计算机与思想奖的获奖人之一。美国人工智能协会(AAAI)、美国计算机协会(ACM)和美国科学促进协会的会士,牛津大学瓦德汉学院的荣誉院士和安德鲁·卡内基(Andrew Carnegie)院士。2012年到2014年,在巴黎担任布莱斯·帕斯卡(Blaise Pascal)主席。在人工智能领域发表了300多篇论文,涉及范围广泛。
Peter Norvig,曾任谷歌公司的研究总监、核心网络搜索算法的负责人。曾与他人合作共同教授了一门有16万名学生注册的在线人工智能课程,帮助开启了当下的大规...
(展开全部)
精彩摘录
Wecanevaluateanalgorithm'sperformanceinfourways:Completeness:Isthealgorithmguaranteedtofindasolutionwhenthereisone?Optimality:Doesthestrategyfindtheoptimalsolution?Timecomplexity:Howlongdoesittaketofindasolution?Spacecomplexity:Howmuchmemoryisneededtoperformthesearch?
——引自第80页
斯图尔特•罗素教授和彼得•诺维格博士的《人工智能:现代方法》一书,是美国最为经典、最具权威性的大学教科书。说它经典,是因为这本书长期以来都是美国大部分知名大学人工智能课程的教科书,今天也已经被全世界1500多所大学采用为教材,其内容覆盖了到每一版出版时为止世界人工智能的主流技术和方法。说它权威,是因为这本书是几乎所有人工智能从业者的参考书,但凡人们对某些人工智能的概念发生争议时,就会以这本书的讲述为准。2002年,我有幸成为诺维格博士的下属,先后在谷歌公司的搜索部门以及研究部门从事与机器学习相关的工作。诺维格博士是作为人工智能专家和科技管理者,被谷歌公司请来负责研发工作的。在我和他共事的十多年里,我们在研究工作中和私底下有很多交流。诺维格博士是一个卓有远见的管理者,也是一名基础极为扎实的技术专家。他并没有因为繁忙的管理工作而放松对新技术的学习和研究。罗素教授是诺维格博士的同事和朋友,他一直活跃在人工智能学术研究的第一线,并曾经担任加利福尼亚大学伯克利分校计算机系主任。罗素教授的研究横跨人工智能的很多领域,包括机器学习、统计模型、知识表示、实时决策、计算机视觉,以及近年来比较热门的强化学习。可以讲,这两位作者是近20年来世界人工智能领域最权威的学者,他们每过一段时间都会更新这本已经非常畅销的教科书,将最新的研究成果和理论方法增补进去。而我有幸见证了他们每一次版本升级的过程。《人工智能:现代方法》的第1版出版于1995年,当时虽然已经有了基于数据的方法,但是从20世纪60年代到20世纪80年代,传统的人工智能方法依然在学术界占主导地位。因此本书第1版的主要内容只包含了这次出版的第4版的第二部分和第三部分,即智能问题的求解和有关知识表示与推理的部分。20世纪90年代其实是人工智能发展的转折点,传统的基于规则和推理的人工智能发展走到了今天,数据驱动的...
——引自章节:第一部分人工智能基础