作者:《Structure and Interpretation of Classical Mechanics》书籍
出版社:The MIT Press
出版年:2001-3-19
评分:7.9
ISBN:9780262194556
所属分类:网络科技
This textbook takes an innovative approach to the teaching of classical mechanics, emphasizing the development of general but practical intellectual tools to support the analysis of nonlinear Hamiltonian systems. The development is organized around a progressively more sophisticated analysis of particular natural systems and weaves examples throughout the presentation. Explorations of phenomena such as transitions to chaos, nonlinear resonances, and resonance overlap to help the student to develop appropriate analytic tools for understanding. Computational algorithms communicate methods used in the analysis of dynamical phenomena. Expressing the methods of mechanics in a computer language forces them to be unambiguous and computationally effective. Once formalized as a procedure, a mathematical idea also becomes a tool that can be used directly to compute results.The student actively explores the motion of systems through computer simulation and experiment. This active exploration is extended to the mathematics. The requirement that the computer be able to interpret any expression provides strict and immediate feedback as to whether an expression is correctly formulated. The interaction with the computer uncovers and corrects many deficiencies in understanding.
Contents
Preface
Acknowledgments
1 Lagrangian Mechanics
1.1 The Principle of Stationary Action
Experience of motion
Realizable paths
1.2 Configuration Spaces
1.3 Generalized Coordinates
Lagrangians in generalized coordinates
1.4 Computing Actions
Paths of minimum action
Finding trajectories that minimize the action
1.5 The Euler-Lagrange Equations
Lagrange equations
1.5.1 Derivation of the Lagrange Equations
Varying a path
Varying the action
Harmonic oscillator
Orbital motion
1.5.2 Computing Lagrange's Equations
The free particle
The harmonic oscillator
1.6 How to Find Lagrangians
Hamilton's principle
Constant acceleration
Central force field
1.6.1 Coordinate Transformations
1.6.2 Systems with Rigid Constraints
Lagrangians for rigidly constrained systems
A pendulum driven at the pivot
Why it works
More generally
1.6.3 Constraints as Coordinate Transformations
1.6.4 The Lagrangian Is Not Unique
Total time derivatives
Adding total time derivatives to Lagrangians
Identification of total time derivatives
1.7 Evolution of Dynamical State
Numerical integration
1.8 Conserved Quantities
1.8.1 Conserved Momenta
Examples of conserved momenta
1.8.2 Energy Conservation
Energy in terms of kinetic and potential energies
1.8.3 Central Forces in Three Dimensions
1.8.4 Noether's Theorem
Illustration: motion in a central potential
1.9 Abstraction of Path Functions
Lagrange equations at a moment
1.10 Constrained Motion
1.10.1 Coordinate Constraints
Now watch this
Alternatively
The pendulum using constraints
Building systems from parts
1.10.2 Derivative Constraints
Goldstein's hoop
1.10.3 Nonholonomic Systems
1.11 Summary
1.12 Projects
2 Rigid Bodies
2.1 Rotational Kinetic Energy
2.2 Kinematics of Rotation
2.3 Moments of Inertia
2.4 Inertia Tensor
2.5 Principal Moments of Inertia
2.6 Representation of the Angular Velocity Vector
Implementation of angular velocity functions
2.7 Euler Angles
2.8 Vector Angular Momentum
2.9 Motion of a Free Rigid Body
Conserved quantities
2.9.1 Computing the Motion of Free Rigid Bodies
2.9.2 Qualitative Features of Free Rigid Body Motion
2.10 Axisymmetric Tops
2.11 Spin-Orbit Coupling
2.11.1 Development of the Potential Energy
2.11.2 Rotation of the Moon and Hyperion
2.12 Euler's Equations
Euler's equations for forced rigid bodies
2.13 Nonsingular Generalized Coordinates
A practical matter
Composition of rotations
2.14 Summary
2.15 Projects
3 Hamiltonian Mechanics
3.1 Hamilton's Equations
Illustration
Hamiltonian state
Computing Hamilton's equations
3.1.1 The Legendre Transformation
Legendre transformations with passive arguments
Hamilton's equations from the Legendre transformation
Legendre transforms of quadratic functions
Computing Hamiltonians
3.1.2 Hamilton's Equations from the Action Principle
3.1.3 A Wiring Diagram
3.2 Poisson Brackets
Properties of the Poisson bracket
Poisson brackets of conserved quantities
3.3 One Degree of Freedom
3.4 Phase Space Reduction
Motion in a central potential
Axisymmetric top
3.4.1 Lagrangian Reduction
3.5 Phase Space Evolution
3.5.1 Phase-Space Description Is Not Unique
3.6 Surfaces of Section
3.6.1 Periodically Driven Systems
3.6.2 Computing Stroboscopic Surfaces of Section
3.6.3 Autonomous Systems
Hénon-Heiles background
The system of Hénon and Heiles
Interpretation
3.6.4 Computing Hénon-Heiles Surfaces of Section
3.6.5 Non-Axisymmetric Top
3.7 Exponential Divergence
3.8 Liouville's Theorem
The phase flow for the pendulum
Proof of Liouville's theorem
Area preservation of stroboscopic surfaces of section
Poincaré recurrence
The gas in the corner of the room
Nonexistence of attractors in Hamiltonian systems
Conservation of phase volume in a dissipative system
Distribution functions
3.9 Standard Map
3.10 Summary
3.11 Projects
4 Phase Space Structure
4.1 Emergence of the Divided Phase Space
Driven pendulum sections with zero drive
Driven pendulum sections for small drive
4.2 Linear Stability
4.2.1 Equilibria of Differential Equations
4.2.2 Fixed Points of Maps
4.2.3 Relations Among Exponents
Hamiltonian specialization
Linear and nonlinear stability
4.3 Homoclinic Tangle
4.3.1 Computation of Stable and Unstable Manifolds
4.4 Integrable Systems
Orbit types in integrable systems
Surfaces of section for integrable systems
4.5 Poincaré-Birkhoff Theorem
4.5.1 Computing the Poincaré-Birkhoff Construction
4.6 Invariant Curves
4.6.1 Finding Invariant Curves
4.6.2 Dissolution of Invariant Curves
4.7 Summary
4.8 Projects
5 Canonical Transformations
5.1 Point Transformations
Implementing point transformations
5.2 General Canonical Transformations
5.2.1 Time-Independent Canonical Transformations
Harmonic oscillator
5.2.2 Symplectic Transformations
5.2.3 Time-Dependent Transformations
Rotating coordinates
5.2.4 The Symplectic Condition
5.3 Invariants of Canonical Transformations
Noninvariance of p v
Invariance of Poisson brackets
Volume preservation
A bilinear form preserved by symplectic transformations
Poincaré integral invariants
5.4 Extended Phase Space
Restricted three-body problem
5.4.1 Poincaré-Cartan Integral Invariant
5.5 Reduced Phase Space
Orbits in a central field
5.6 Generating Functions
The polar-canonical transformation
5.6.1 F1 Generates Canonical Transformations
5.6.2 Generating Functions and Integral Invariants
Generating functions of type F1
Generating functions of type F2
Relationship between F1 and F2
5.6.3 Types of Generating Functions
Generating functions in extended phase space
5.6.4 Point Transformations
Polar and rectangular coordinates
Rotating coordinates
Two-body problem
Epicyclic motion
5.6.5 Classical ``Gauge'' Transformations
5.7 Time Evolution Is Canonical
Liouville's theorem, again
Another time-evolution transformation
5.7.1 Another View of Time Evolution
Area preservation of surfaces of section
5.7.2 Yet Another View of Time Evolution
5.8 Hamilton-Jacobi Equation
5.8.1 Harmonic Oscillator
5.8.2 Kepler Problem
5.8.3 F2 and the Lagrangian
5.8.4 The Action Generates Time Evolution
5.9 Lie Transforms
Lie transforms of functions
Simple Lie transforms
Example
5.10 Lie Series
Dynamics
Computing Lie series
5.11 Exponential Identities
5.12 Summary
5.13 Projects
6 Canonical Perturbation Theory
6.1 Perturbation Theory with Lie Series
6.2 Pendulum as a Perturbed Rotor
6.2.1 Higher Order
6.2.2 Eliminating Secular Terms
6.3 Many Degrees of Freedom
6.3.1 Driven Pendulum as a Perturbed Rotor
6.4 Nonlinear Resonance
6.4.1 Pendulum Approximation
Driven pendulum resonances
6.4.2 Reading the Hamiltonian
6.4.3 Resonance-Overlap Criterion
6.4.4 Higher-Order Perturbation Theory
6.4.5 Stability of the Inverted Vertical Equilibrium
6.5 Summary
6.6 Projects
7 Appendix: Scheme
Procedure calls
Lambda expressions
Definitions
Conditionals
Recursive procedures
Local names
Compound data -- lists and vectors
Symbols
8 Appendix: Our Notation
Functions
Symbolic values
Tuples
Derivatives
Derivatives of functions of multiple arguments
Structured results
Bibliography
List of Exercises
Index
《版式设计基础教程》从“什么是版式设计”开始讲解为什么要进行版式设计,版式设计的基本要素、分类以及文字排列的基本方式。除
计算机监控技术与系统开发 内容简介 计算机监控系统广泛应用于众多领域。本书以快速语言Visual Basic 6.0和TC2.0作为工具,详细阐述了计算机监控系...
《牢记使命:中国共产党为什么能砥砺奋进》内容简介:黄相怀著的《牢记使命:中国共产党为什么能砥砺奋进》紧扣党的十九大精神,以
这不仅仅是一本图书!还有多媒体光盘、网站……将带你进入全新的世界!本书采用最先进的方法和技术讲述计算机基础知识,涉及面之
本书是系统学习Servlet和JSP的必读之作。由全球知名的Java技术专家(《HowTomcatWorks》作者)亲自执笔,不仅全面解读Servlet和J
《人生三舍》内容简介:本书是关于探索人生哲学的通俗读物。本书包括了把过程当作一种享受;直的不行就绕个弯;宽广胸襟,无忧也无
Amongthetestsyouperformonwebapplications,securitytestingisperhapsthemostimportan...
《不可消失的门店》内容简介:第一部全面深度阐释新零售时代电商与实体门店如何可持续发展的著作。贝尔教授通过对Bonobos.com、 Di
《Node与Express开发(第2版)》内容简介:本书系统地讲解了使用Express开发动态Web应用的流程和步骤。作者不仅讲授了开发公共站点
《素描800例,一本就够》内容简介:本书提供了动物、静物、植物、食物、人物、交通、建筑、风景等类别中的131种事物,共计867幅图例
数据库系统工程师2004至2011年试题分析与解答 本书特色 为帮助考生复习备考,在《数据库系统工程师2004至2011年试题分析与解答》一书中,全国计算机专业...
《刘慈欣中英双语科幻经典(青少版)1:流浪地球》内容简介:科幻短篇小说集,包含2篇短篇《赡养人类》和《吞食者》,《赡养人类》
《未来学徒》内容简介:本书从技术、产业和商业三个角度向读者介绍了当今人工智能的发展状况,让人工智能从历史和数学公式中走到读
《现代编译原理:C语言描述》全面讲述了现代编译器的结构、编译算法和实现方法,是Andreww.Apple的“虎书”——ModernCompilerIm
《Processing开发实战》内容简介:Processing简单易学的界面和编程风格,使很多机器人爱好者或电子制作爱好者,可以借助它完成机器
6.00x8.75x0.75inThewebisessentiallysoftware,justonadifferentplatform.Assuchitcan...
《FinOps云成本优化》内容简介:随着云计算的迅猛发展,越来越多的业务迁移至云端,众多企业在审计成本的过程中发现,用来支撑业务
互联网时代:全球第一部全面、系统、深入、客观解析互联网的纪录片 本书特色 全球**次全面、系统、深入、客观解析互联网中央电视台热播纪录片《互联网时代》同名书免费...
Literateprogrammingisaprogrammingmethodologythatcombinesaprogramminglanguagewith...
C语言兼具高级语言和汇编语言的特点,学习起来难度较大,令不少初学者望而生畏。同时,C语言又是一门应用非常广泛的编程语言,在