作者:《Structure and Interpretation of Classical Mechanics》书籍
出版社:The MIT Press
出版年:2001-3-19
评分:7.9
ISBN:9780262194556
所属分类:网络科技
This textbook takes an innovative approach to the teaching of classical mechanics, emphasizing the development of general but practical intellectual tools to support the analysis of nonlinear Hamiltonian systems. The development is organized around a progressively more sophisticated analysis of particular natural systems and weaves examples throughout the presentation. Explorations of phenomena such as transitions to chaos, nonlinear resonances, and resonance overlap to help the student to develop appropriate analytic tools for understanding. Computational algorithms communicate methods used in the analysis of dynamical phenomena. Expressing the methods of mechanics in a computer language forces them to be unambiguous and computationally effective. Once formalized as a procedure, a mathematical idea also becomes a tool that can be used directly to compute results.The student actively explores the motion of systems through computer simulation and experiment. This active exploration is extended to the mathematics. The requirement that the computer be able to interpret any expression provides strict and immediate feedback as to whether an expression is correctly formulated. The interaction with the computer uncovers and corrects many deficiencies in understanding.
Contents
Preface
Acknowledgments
1 Lagrangian Mechanics
1.1 The Principle of Stationary Action
Experience of motion
Realizable paths
1.2 Configuration Spaces
1.3 Generalized Coordinates
Lagrangians in generalized coordinates
1.4 Computing Actions
Paths of minimum action
Finding trajectories that minimize the action
1.5 The Euler-Lagrange Equations
Lagrange equations
1.5.1 Derivation of the Lagrange Equations
Varying a path
Varying the action
Harmonic oscillator
Orbital motion
1.5.2 Computing Lagrange's Equations
The free particle
The harmonic oscillator
1.6 How to Find Lagrangians
Hamilton's principle
Constant acceleration
Central force field
1.6.1 Coordinate Transformations
1.6.2 Systems with Rigid Constraints
Lagrangians for rigidly constrained systems
A pendulum driven at the pivot
Why it works
More generally
1.6.3 Constraints as Coordinate Transformations
1.6.4 The Lagrangian Is Not Unique
Total time derivatives
Adding total time derivatives to Lagrangians
Identification of total time derivatives
1.7 Evolution of Dynamical State
Numerical integration
1.8 Conserved Quantities
1.8.1 Conserved Momenta
Examples of conserved momenta
1.8.2 Energy Conservation
Energy in terms of kinetic and potential energies
1.8.3 Central Forces in Three Dimensions
1.8.4 Noether's Theorem
Illustration: motion in a central potential
1.9 Abstraction of Path Functions
Lagrange equations at a moment
1.10 Constrained Motion
1.10.1 Coordinate Constraints
Now watch this
Alternatively
The pendulum using constraints
Building systems from parts
1.10.2 Derivative Constraints
Goldstein's hoop
1.10.3 Nonholonomic Systems
1.11 Summary
1.12 Projects
2 Rigid Bodies
2.1 Rotational Kinetic Energy
2.2 Kinematics of Rotation
2.3 Moments of Inertia
2.4 Inertia Tensor
2.5 Principal Moments of Inertia
2.6 Representation of the Angular Velocity Vector
Implementation of angular velocity functions
2.7 Euler Angles
2.8 Vector Angular Momentum
2.9 Motion of a Free Rigid Body
Conserved quantities
2.9.1 Computing the Motion of Free Rigid Bodies
2.9.2 Qualitative Features of Free Rigid Body Motion
2.10 Axisymmetric Tops
2.11 Spin-Orbit Coupling
2.11.1 Development of the Potential Energy
2.11.2 Rotation of the Moon and Hyperion
2.12 Euler's Equations
Euler's equations for forced rigid bodies
2.13 Nonsingular Generalized Coordinates
A practical matter
Composition of rotations
2.14 Summary
2.15 Projects
3 Hamiltonian Mechanics
3.1 Hamilton's Equations
Illustration
Hamiltonian state
Computing Hamilton's equations
3.1.1 The Legendre Transformation
Legendre transformations with passive arguments
Hamilton's equations from the Legendre transformation
Legendre transforms of quadratic functions
Computing Hamiltonians
3.1.2 Hamilton's Equations from the Action Principle
3.1.3 A Wiring Diagram
3.2 Poisson Brackets
Properties of the Poisson bracket
Poisson brackets of conserved quantities
3.3 One Degree of Freedom
3.4 Phase Space Reduction
Motion in a central potential
Axisymmetric top
3.4.1 Lagrangian Reduction
3.5 Phase Space Evolution
3.5.1 Phase-Space Description Is Not Unique
3.6 Surfaces of Section
3.6.1 Periodically Driven Systems
3.6.2 Computing Stroboscopic Surfaces of Section
3.6.3 Autonomous Systems
Hénon-Heiles background
The system of Hénon and Heiles
Interpretation
3.6.4 Computing Hénon-Heiles Surfaces of Section
3.6.5 Non-Axisymmetric Top
3.7 Exponential Divergence
3.8 Liouville's Theorem
The phase flow for the pendulum
Proof of Liouville's theorem
Area preservation of stroboscopic surfaces of section
Poincaré recurrence
The gas in the corner of the room
Nonexistence of attractors in Hamiltonian systems
Conservation of phase volume in a dissipative system
Distribution functions
3.9 Standard Map
3.10 Summary
3.11 Projects
4 Phase Space Structure
4.1 Emergence of the Divided Phase Space
Driven pendulum sections with zero drive
Driven pendulum sections for small drive
4.2 Linear Stability
4.2.1 Equilibria of Differential Equations
4.2.2 Fixed Points of Maps
4.2.3 Relations Among Exponents
Hamiltonian specialization
Linear and nonlinear stability
4.3 Homoclinic Tangle
4.3.1 Computation of Stable and Unstable Manifolds
4.4 Integrable Systems
Orbit types in integrable systems
Surfaces of section for integrable systems
4.5 Poincaré-Birkhoff Theorem
4.5.1 Computing the Poincaré-Birkhoff Construction
4.6 Invariant Curves
4.6.1 Finding Invariant Curves
4.6.2 Dissolution of Invariant Curves
4.7 Summary
4.8 Projects
5 Canonical Transformations
5.1 Point Transformations
Implementing point transformations
5.2 General Canonical Transformations
5.2.1 Time-Independent Canonical Transformations
Harmonic oscillator
5.2.2 Symplectic Transformations
5.2.3 Time-Dependent Transformations
Rotating coordinates
5.2.4 The Symplectic Condition
5.3 Invariants of Canonical Transformations
Noninvariance of p v
Invariance of Poisson brackets
Volume preservation
A bilinear form preserved by symplectic transformations
Poincaré integral invariants
5.4 Extended Phase Space
Restricted three-body problem
5.4.1 Poincaré-Cartan Integral Invariant
5.5 Reduced Phase Space
Orbits in a central field
5.6 Generating Functions
The polar-canonical transformation
5.6.1 F1 Generates Canonical Transformations
5.6.2 Generating Functions and Integral Invariants
Generating functions of type F1
Generating functions of type F2
Relationship between F1 and F2
5.6.3 Types of Generating Functions
Generating functions in extended phase space
5.6.4 Point Transformations
Polar and rectangular coordinates
Rotating coordinates
Two-body problem
Epicyclic motion
5.6.5 Classical ``Gauge'' Transformations
5.7 Time Evolution Is Canonical
Liouville's theorem, again
Another time-evolution transformation
5.7.1 Another View of Time Evolution
Area preservation of surfaces of section
5.7.2 Yet Another View of Time Evolution
5.8 Hamilton-Jacobi Equation
5.8.1 Harmonic Oscillator
5.8.2 Kepler Problem
5.8.3 F2 and the Lagrangian
5.8.4 The Action Generates Time Evolution
5.9 Lie Transforms
Lie transforms of functions
Simple Lie transforms
Example
5.10 Lie Series
Dynamics
Computing Lie series
5.11 Exponential Identities
5.12 Summary
5.13 Projects
6 Canonical Perturbation Theory
6.1 Perturbation Theory with Lie Series
6.2 Pendulum as a Perturbed Rotor
6.2.1 Higher Order
6.2.2 Eliminating Secular Terms
6.3 Many Degrees of Freedom
6.3.1 Driven Pendulum as a Perturbed Rotor
6.4 Nonlinear Resonance
6.4.1 Pendulum Approximation
Driven pendulum resonances
6.4.2 Reading the Hamiltonian
6.4.3 Resonance-Overlap Criterion
6.4.4 Higher-Order Perturbation Theory
6.4.5 Stability of the Inverted Vertical Equilibrium
6.5 Summary
6.6 Projects
7 Appendix: Scheme
Procedure calls
Lambda expressions
Definitions
Conditionals
Recursive procedures
Local names
Compound data -- lists and vectors
Symbols
8 Appendix: Our Notation
Functions
Symbolic values
Tuples
Derivatives
Derivatives of functions of multiple arguments
Structured results
Bibliography
List of Exercises
Index
单片机实验与实践教程(一)(第2版) 内容简介 本书为《单片机系列教程》之一,较之第1版,在原用汇编语言编程的实验参考程序中,增加了部分C语言编程,使内容更加完...
网络社会:点与线的生存 本书特色 新世纪,高科技将为人类社会创造出一个前所未有的、充满多样性的发展空间。 高科技进一步发展,每一个人将激发出巨大的潜力,创造出前...
《微信营销与运营一册通》内容简介:《微信营销与运营一册通》深入介绍了当今最为火热的话题——微信营销,内容全面、系统和深入。
《SoftwareDesign中文版03》的主题为:sed/AWK入门和Mac开发环境。特辑1详细讲解了sed与AWK的基础与使用方法、日志分析、ShellSc
《守望卡瓦格博》内容简介:2006年,新浪博客开通的第二年,杨旭东注册了“留给自己一份柔软的心情”的个人旅行博客。十余年来,一
《互联网项目管理实践精粹》内容简介:一家公司想要做好一个项目并不难,难的是能够同时把全部现行项目都做好。做好项目管理,能够
《创新家装设计图典(第4季):玄关走廊》内容简介:全新升级的《创新家装设计图典第4季》将继续为读者提供新的设计案例,针对居室
资深Linux/Unix系统管理专家兼架构师多年一线工作经验结晶,51CTO和ChinaUnix等知名社区联袂推荐。结合实际生产环境,从Linux虚拟
作者在本书中提出:人文科学没有意识到人类现象中的物理的和生物的特性;自然科学没有自觉到他们是归属于一定的文化、社会和历史
《基于用户体验的交互式信息服务》针对信息管理和服务中的“交互“问题,在国内外现有研究的基础上,从用户需求出发,围绕交互式
《漫长的寒冬:失落之城》内容简介:永生不再是神话,而是选择 ●《亚特兰蒂斯》作者A.G.利德尔 ●颠覆想象的史诗级科幻巨著完结篇
《人工神经网络与微粒群优化》介绍了几类常用的和基本的人工神经网络模型,即感知机、前馈型、反馈型、随机神经网络,还介绍了比
《全国会计专业技术资格考试考点串讲与经典题库:财务管理》内容简介:本书是为参加全国会计专业技术资格考试的人士量身定做的一本
《国外计算机科学教材系列•Intel汇编语言程序设计(第5版)》全面细致地讲述了汇编语言程序设计的各个方面。从微处理器体系结构、工
《哄哄你我就高兴了》内容简介:活得好不好,活得快不快乐,关键在于你是不是活明白了,是不是活得无怨无悔,是不是活得没有遗憾,
《金融创新与金融中心建设》内容简介:本书主要从金融创新的视角研究上海国际金融中心建设和发展问题。在分析上海国际金融中心建设
《我知道你在想什么:八卦心理学》内容简介:不灌心灵鸡汤,不堆专业名词,我们就是要剖析心理学的黑历史!马伯庸、曹天元、刘夙、
《PHP求职宝典》以PHP求职面试为核心,全面介绍了在PHP面试中重点考查的各个考点,并从求职面试、职业规划、面试渠道、面试真题、
网页制作综合技术教程 本书特色 遵循符合web标准的设计思想,讲解适于实际工作的网页元素,提供丰富的教学典型案例。网页制作综合技术教程 内容简介 本书全面介绍了...
《鲁迅自编文集:伪自由书》内容简介:鲁迅经典杂文集,收录鲁迅寄给《申报》上的《自由谈》的杂感及一些笔战文章。冷嘲热讽讥评时