作者:《Structure and Interpretation of Classical Mechanics》书籍
出版社:The MIT Press
出版年:2001-3-19
评分:7.9
ISBN:9780262194556
所属分类:网络科技
This textbook takes an innovative approach to the teaching of classical mechanics, emphasizing the development of general but practical intellectual tools to support the analysis of nonlinear Hamiltonian systems. The development is organized around a progressively more sophisticated analysis of particular natural systems and weaves examples throughout the presentation. Explorations of phenomena such as transitions to chaos, nonlinear resonances, and resonance overlap to help the student to develop appropriate analytic tools for understanding. Computational algorithms communicate methods used in the analysis of dynamical phenomena. Expressing the methods of mechanics in a computer language forces them to be unambiguous and computationally effective. Once formalized as a procedure, a mathematical idea also becomes a tool that can be used directly to compute results.The student actively explores the motion of systems through computer simulation and experiment. This active exploration is extended to the mathematics. The requirement that the computer be able to interpret any expression provides strict and immediate feedback as to whether an expression is correctly formulated. The interaction with the computer uncovers and corrects many deficiencies in understanding.
Contents
Preface
Acknowledgments
1 Lagrangian Mechanics
1.1 The Principle of Stationary Action
Experience of motion
Realizable paths
1.2 Configuration Spaces
1.3 Generalized Coordinates
Lagrangians in generalized coordinates
1.4 Computing Actions
Paths of minimum action
Finding trajectories that minimize the action
1.5 The Euler-Lagrange Equations
Lagrange equations
1.5.1 Derivation of the Lagrange Equations
Varying a path
Varying the action
Harmonic oscillator
Orbital motion
1.5.2 Computing Lagrange's Equations
The free particle
The harmonic oscillator
1.6 How to Find Lagrangians
Hamilton's principle
Constant acceleration
Central force field
1.6.1 Coordinate Transformations
1.6.2 Systems with Rigid Constraints
Lagrangians for rigidly constrained systems
A pendulum driven at the pivot
Why it works
More generally
1.6.3 Constraints as Coordinate Transformations
1.6.4 The Lagrangian Is Not Unique
Total time derivatives
Adding total time derivatives to Lagrangians
Identification of total time derivatives
1.7 Evolution of Dynamical State
Numerical integration
1.8 Conserved Quantities
1.8.1 Conserved Momenta
Examples of conserved momenta
1.8.2 Energy Conservation
Energy in terms of kinetic and potential energies
1.8.3 Central Forces in Three Dimensions
1.8.4 Noether's Theorem
Illustration: motion in a central potential
1.9 Abstraction of Path Functions
Lagrange equations at a moment
1.10 Constrained Motion
1.10.1 Coordinate Constraints
Now watch this
Alternatively
The pendulum using constraints
Building systems from parts
1.10.2 Derivative Constraints
Goldstein's hoop
1.10.3 Nonholonomic Systems
1.11 Summary
1.12 Projects
2 Rigid Bodies
2.1 Rotational Kinetic Energy
2.2 Kinematics of Rotation
2.3 Moments of Inertia
2.4 Inertia Tensor
2.5 Principal Moments of Inertia
2.6 Representation of the Angular Velocity Vector
Implementation of angular velocity functions
2.7 Euler Angles
2.8 Vector Angular Momentum
2.9 Motion of a Free Rigid Body
Conserved quantities
2.9.1 Computing the Motion of Free Rigid Bodies
2.9.2 Qualitative Features of Free Rigid Body Motion
2.10 Axisymmetric Tops
2.11 Spin-Orbit Coupling
2.11.1 Development of the Potential Energy
2.11.2 Rotation of the Moon and Hyperion
2.12 Euler's Equations
Euler's equations for forced rigid bodies
2.13 Nonsingular Generalized Coordinates
A practical matter
Composition of rotations
2.14 Summary
2.15 Projects
3 Hamiltonian Mechanics
3.1 Hamilton's Equations
Illustration
Hamiltonian state
Computing Hamilton's equations
3.1.1 The Legendre Transformation
Legendre transformations with passive arguments
Hamilton's equations from the Legendre transformation
Legendre transforms of quadratic functions
Computing Hamiltonians
3.1.2 Hamilton's Equations from the Action Principle
3.1.3 A Wiring Diagram
3.2 Poisson Brackets
Properties of the Poisson bracket
Poisson brackets of conserved quantities
3.3 One Degree of Freedom
3.4 Phase Space Reduction
Motion in a central potential
Axisymmetric top
3.4.1 Lagrangian Reduction
3.5 Phase Space Evolution
3.5.1 Phase-Space Description Is Not Unique
3.6 Surfaces of Section
3.6.1 Periodically Driven Systems
3.6.2 Computing Stroboscopic Surfaces of Section
3.6.3 Autonomous Systems
Hénon-Heiles background
The system of Hénon and Heiles
Interpretation
3.6.4 Computing Hénon-Heiles Surfaces of Section
3.6.5 Non-Axisymmetric Top
3.7 Exponential Divergence
3.8 Liouville's Theorem
The phase flow for the pendulum
Proof of Liouville's theorem
Area preservation of stroboscopic surfaces of section
Poincaré recurrence
The gas in the corner of the room
Nonexistence of attractors in Hamiltonian systems
Conservation of phase volume in a dissipative system
Distribution functions
3.9 Standard Map
3.10 Summary
3.11 Projects
4 Phase Space Structure
4.1 Emergence of the Divided Phase Space
Driven pendulum sections with zero drive
Driven pendulum sections for small drive
4.2 Linear Stability
4.2.1 Equilibria of Differential Equations
4.2.2 Fixed Points of Maps
4.2.3 Relations Among Exponents
Hamiltonian specialization
Linear and nonlinear stability
4.3 Homoclinic Tangle
4.3.1 Computation of Stable and Unstable Manifolds
4.4 Integrable Systems
Orbit types in integrable systems
Surfaces of section for integrable systems
4.5 Poincaré-Birkhoff Theorem
4.5.1 Computing the Poincaré-Birkhoff Construction
4.6 Invariant Curves
4.6.1 Finding Invariant Curves
4.6.2 Dissolution of Invariant Curves
4.7 Summary
4.8 Projects
5 Canonical Transformations
5.1 Point Transformations
Implementing point transformations
5.2 General Canonical Transformations
5.2.1 Time-Independent Canonical Transformations
Harmonic oscillator
5.2.2 Symplectic Transformations
5.2.3 Time-Dependent Transformations
Rotating coordinates
5.2.4 The Symplectic Condition
5.3 Invariants of Canonical Transformations
Noninvariance of p v
Invariance of Poisson brackets
Volume preservation
A bilinear form preserved by symplectic transformations
Poincaré integral invariants
5.4 Extended Phase Space
Restricted three-body problem
5.4.1 Poincaré-Cartan Integral Invariant
5.5 Reduced Phase Space
Orbits in a central field
5.6 Generating Functions
The polar-canonical transformation
5.6.1 F1 Generates Canonical Transformations
5.6.2 Generating Functions and Integral Invariants
Generating functions of type F1
Generating functions of type F2
Relationship between F1 and F2
5.6.3 Types of Generating Functions
Generating functions in extended phase space
5.6.4 Point Transformations
Polar and rectangular coordinates
Rotating coordinates
Two-body problem
Epicyclic motion
5.6.5 Classical ``Gauge'' Transformations
5.7 Time Evolution Is Canonical
Liouville's theorem, again
Another time-evolution transformation
5.7.1 Another View of Time Evolution
Area preservation of surfaces of section
5.7.2 Yet Another View of Time Evolution
5.8 Hamilton-Jacobi Equation
5.8.1 Harmonic Oscillator
5.8.2 Kepler Problem
5.8.3 F2 and the Lagrangian
5.8.4 The Action Generates Time Evolution
5.9 Lie Transforms
Lie transforms of functions
Simple Lie transforms
Example
5.10 Lie Series
Dynamics
Computing Lie series
5.11 Exponential Identities
5.12 Summary
5.13 Projects
6 Canonical Perturbation Theory
6.1 Perturbation Theory with Lie Series
6.2 Pendulum as a Perturbed Rotor
6.2.1 Higher Order
6.2.2 Eliminating Secular Terms
6.3 Many Degrees of Freedom
6.3.1 Driven Pendulum as a Perturbed Rotor
6.4 Nonlinear Resonance
6.4.1 Pendulum Approximation
Driven pendulum resonances
6.4.2 Reading the Hamiltonian
6.4.3 Resonance-Overlap Criterion
6.4.4 Higher-Order Perturbation Theory
6.4.5 Stability of the Inverted Vertical Equilibrium
6.5 Summary
6.6 Projects
7 Appendix: Scheme
Procedure calls
Lambda expressions
Definitions
Conditionals
Recursive procedures
Local names
Compound data -- lists and vectors
Symbols
8 Appendix: Our Notation
Functions
Symbolic values
Tuples
Derivatives
Derivatives of functions of multiple arguments
Structured results
Bibliography
List of Exercises
Index
ASP.NET电子商务入门经典-(第2版) 内容简介 本书全面详细地介绍了如何构建电子商务Web站点,并通过大量的代码和示例逐步教会您设计和构建站点的具体过程。...
本書從廣告、海報、書籍到雜誌,分門別類訪談相關領域箇中翹楚。報紙雜誌類──像是《紐約時報雜誌》、GQ、Esquire、Eye、Zambla
《浮现式设计:专业软件开发的演进本质》主要面向软件开发者群体,尤其是对敏捷开发感兴趣的程序设计人员。浮现式设计是一种敏捷
群体智能与计算智能优化的盲均衡算法 本书特色 本书针对盲均衡理论与算法研究中初始权向量优化的难题,以智能群算法和智能计算理论为工具,开展了盲均衡算法性能优化的研...
《赛雷三分钟漫画三国演义4》内容简介:1000万人都在看的“超萌赛雷”,前后创作三年,精心绘制全彩漫画三国演义! 电影式全场景,
ConceptsinProgrammingLanguageselucidatesthecentralconceptsusedinmodernprogrammin...
吴国斌博士,PMP,微软亚洲研究院学术合作经理,负责中国高校及科研机构KinectforWindows学术合作计划及微软精英大挑战Kinect主题
《AI+医疗健康:智能化医疗健康的应用与未来》内容简介:随着新一轮科技革命的到来,人工智能、大数据等技术对医疗健康领域产生了巨
《青年管理者》内容简介:企业如何制定发展战略?如何在数字化时代推进战略创新?如何实行组织结构变革和平稳转型?如何系统化推进
《21世纪高等院校电气信息类系列教材•人工神经网络原理及仿真实例》以神经网络结构为主线,以学习算法为副线,详细介绍了神经网络
《通信原理》(第5版)是在1980、1984、1988、1995年出版的《通信原理》教材的基础上,根据科技发展和教学改革实践的需要,经评审和
《温文载道》内容简介:文以载道,温文尔雅。文只是载体,道才是根本。正所谓“文章合为时而著,歌诗合为事而作”。“文以载道”不
《对话:21位重塑当代摄影的艺术家》内容简介:本书是当代影像学者、作家傅尔得近年来对当下具有影响力和潜力的国际摄影艺术家的访
《普通高等院校电子信息类系列教材·无线通信调制与编码》主要介绍了无线通信中调制与编码的原理及其应用。全书共分7章,内容包括
《Kubernetes实战:构建生产级应用平台》内容简介:本书探讨了通往Kubernetes生产环境成功道路中所涉及的多种技术、模式和抽象方面
《思想政治理论金榜书》内容简介:本书是一本由双一流大学对口专业教授、学者合作编写的考研政治辅导教材,并严格依据教育部所颁布
本书从Windows内核编程出发,全面系统地介绍了串口、键盘、磁盘、文件系统、网络等相关的Windows内核模块的编程技术,以及基于这
《新能源系统储能原理与技术》内容简介:随着可再生能源的不断发展,催生了对于储能设备的需求,新一代储能电池、超级电容器等储能
本书是作者在美国、瑞士的ArtCebter研读设计,以及长期在美国和中国大陆从事产品设计工作的经验总结。书籍内容丰富,图文并茂,信
Word/Excel/PPT 2016从入门到精通 本书特色 ★本书《Word/Excel/PPT 2016从入门到精通》深入浅出,从基础入门知识到专业精通内容...