作者:《Understanding Machine Learning》书籍
出版社:Cambridge University Press
出版年:2014
评分:7.8
ISBN:9781107057135
所属分类:网络科技
Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides an extensive theoretical account of the fundamental ideas underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics of the field, the book covers a wide array of central topics that have not been addressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for an advanced undergraduate or beginning graduate course, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics, and engineering.
Introduction
Part I: Foundations
A gentle start
A formal learning model
Learning via uniform convergence
The bias-complexity trade-off
The VC-dimension
Non-uniform learnability
The runtime of learning
Part II: From Theory to Algorithms
Linear predictors
Boosting
Model selection and validation
Convex learning problems
Regularization and stability
Stochastic gradient descent
Support vector machines
Kernel methods
Multiclass, ranking, and complex prediction problems
Decision trees
Nearest neighbor
Neural networks
Part III: Additional Learning Models
Online learning
Clustering
Dimensionality reduction
Generative models
Feature selection and generation
Part IV: Advanced Theory
Rademacher complexities
Covering numbers
Proof of the fundamental theorem of learning theory
Multiclass learnability
Compression bounds
PAC-Bayes
Appendices
Technical lemmas
Measure concentration
Linear algebra
The Adobe Illustrator CS6/CC WOW! Book 本书特色 本书共8章,第1章为您介绍创造性的工作区,主要讲解工作区的组织与软件的基...
《新农人看农村》内容简介:随着“大众创业、万众创新”时代的到来,越来越多的大学生村官凭借多年所学和灵活的创新意识、丰富的互
《内在的星空:余秋雨人文创想》内容简介:★文化导师余秋雨读行四十年感悟精粹,撷选创作生涯二十余部名作智慧结晶 ★兼具辞彩之胜
《杀馋》内容简介:本书收录了周墙作为一个好吃佬创作的27篇生动风趣的美食散文,以食物为核心串联起数十年人生岁月,组成一部怀旧
《HTML5+CSS3+JavaScript前端开发基础》内容简介:本书面向Web前端开发初学者,全面系统地讲解了HTML5、CSS3、JavaScript基础...
《第三种创新》的作者罗伯托•维甘提是创新管理权威专家,米兰理工大学管理学院与设计学院教授,关于意大利设计管理的研究荣获意
参透Delphi/Kylix 本书特色 ◆清华大学教师力作,包含作者多年编译器研究与程序设计教学经验◆深入Object Pascal语言核心,澄清许多容易让人迷...
《少年读三国》内容简介:本书是一套写给青少年读的三国历史,以时间为顺序,从黄巾起义讲到三国归晋。作者以通俗的笔触,将晦涩的
《恐龙世界探险日记(神奇科学探险之旅)》内容简介:《恐龙世界探险日记》是“神奇科学探险之旅”丛书之一,本书选取了恐龙大家族
计算机网络系统方法(原书第3版),ISBN:9787111155140,作者:(美)LarryL.Peterson,(美)BruceS.Davie著;叶新铭,贾...
《微行为心理学》内容简介:知己知彼方能百战不殆,本书让你在看清他人微行为的同时了解自己的行为习惯,轻轻松松做到知人知面又知
《当我遇见一个人》内容简介:任何事物,如果你觉得它美,那么它一定暗合了某种美的规律。家庭教育也一样,一个孩子从呱呱坠地到健
Probabilisticmodelsarebecomingincreasinglyimportantinanalysingthehugeamountofdat...
本书作者MontyNeworn是国际计算机象棋协公的主席,作者是用生动活泼的笔触描写了深蓝与卡斯帕罗夫之战这一引起全世界关注的历史事
《中国企业对外直接投资分析报告(2017)》内容简介:本报告分为总论篇、实务篇与关注篇三部分。总论篇在描述全球国际直接投资基础
在线阅读本书《CrossingtheChasm:MarketingandSellingDisrupti》:Mooreprovidesaninvaluablese...
《法商智慧:公民维权36计》内容简介:本书涵盖了中国公民在民事经济活动、婚姻与家庭关系、劳动人事领域、日常消费活动、与政府部
《富强竞争:工业文化与国家兴衰》内容简介:富强,是社会主义核心价值观之首,也是古今中外各个国家、民族孜孜以求的核心价值观,
IanG.Clifton是西雅图A.R.O.的用户体验负责人,并且领导着Android开发团队,在那里,他开发了Saga——一种了解你的Android和iOS应
《图解博弈心理学·微表情心理学》内容简介:本书主要针对各行各业的精英人士以及想学习微表情心理学知识的人员而编写。全书以分析