"Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." -- Elon Musk, co-chair of OpenAI; co-founder and CEO of Tesla and SpaceX
Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.
The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.
Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Acknowledgments xv
Notation xix
1 Introduction 1
1.1 Who Should Read This Book? 8
1.2 Historical Trend sin Deep Learning 12
I Applied Math and Machine Learning Basics 27
2 Linear Algebra 29
2.1 Scalars, Vectors, Matrices and Tensors 29
2.2 Multiplying Matricesand Vectors 32
2.3 Identity and Inverse Matrices 34
2.4 Linear Dependence and Span 35
2.5 Norms 36
2.6 Special Kinds of Matrices and Vectors 38
2.7 Eigendecomposition 39
2.8 Singular Value Decomposition 42
2.9 The Moore-Penrose Pseudoinverse 43
2.10 The Trace Operator 44
2.11 The Determinant 45
2.12 Example: Principal Components Analysis 45
3 Probability and Information Theory 51
3.1 Why Probability? 52
3.2 Random Variables 54
3.3 Probability Distributions 54
3.4 Marginal Probability 56
3.5 ConditionalProbability 57
3.6 The Chain Rule of Conditional Probabilities 57
3.7 Independence and Conditional Independence 58
3.8 Expectation, Varianceand Covariance 58
3.9 Common Probability Distributions 60
3.10 UsefulPropertiesofCommonFunctions 65
3.11 Bayes’Rule 68
3.12 Technical Details of Continuous Variables 68
3.13 Information Theory 70
3.14 Structured Probabilistic Models 74
4 Numerical Computation 77
4.1 Overflow and Underflow 77
4.2 Poor Conditioning 79
4.3 Gradient-Based Optimization 79
4.4 Constrained Optimization 89
4.5 Example: Linear Least Squares 92
5 Machine Learning Basics 95
5.1 Learning Algorithms 96
5.2 Capacity, Overfitting and Underfitting 107
5.3 Hyperparameters and Validation Sets 117
5.4 Estimators, Bias and Variance 119
5.5 Maximum Likelihood Estimation 128
5.6 BayesianStatistics132
5.7 Supervised Learning Algorithms 136
5.8 Unsupervised Learning Algorithms142
5.9 StochasticGradientDescent 147
5.10 Building a Machine Learning Algorithm 149
5.11 Challenges Motivating Deep Learning 151
II Deep Networks: Modern Practices 161
6 Deep Feedforward Networks 163
6.1 Example:Learning XOR 166
6.2 Gradient-Based Learning 171
6.3 Hidden Units 185
6.4 Architecture Design 191
6.5 Back-Propagation and Other Dierentiation Algorithms 197
6.6 Historical Notes 217
7 Regularization for Deep Learning 221
7.1 Parameter Norm Penalties 223
7.2 Norm Penalties as Constrained Optimization 230
7.3 Regularization and Under-Constrained Problems 232
7.4 Dataset Augmentation 233
7.5 Noise Robustness 235
7.6 Semi-Supervised Learning236
7.7 Multitask Learning 237
7.8 Early Stopping 239
7.9 Parameter Tying and Parameter Sharing 246
7.10 Sparse Representations 247
7.11 Bagging and Other Ensemble Methods 249
7.12 Dropout 251
7.13 Adversarial Training261
7.14 Tangent Distance, Tangent Prop and Manifold Tangent Classiffer 263
8 Optimization for Training DeepModels 267
8.1 How Learning Differs from Pure Optimization 268
8.2 Challenges in Neural Network Optimization 275
8.3 Basic Algorithms 286
8.4 Parameter Initialization Strategies 292
8.5 Algorithms with Adaptive Learning Rates 298
8.6 Approximate Second-Order Methods 302
8.7 Optimization Strategies and Meta-Algorithms 309
9 Convolutional Networks 321
9.1 The Convolution Operation 322
9.2 Motivation 324
9.3 Pooling 330
9.4 Convolution and Pooling as an Infinitely Strong Prior 334
9.5 Variants of the Basic Convolution Function 337
9.6 Structured Outputs 347
9.7 Data Types 348
9.8 Efficient Convolution Algorithms 350
9.9 Random or Unsupervised Features 351
9.10 The Neuroscientific Basis for Convolutional Networks 353
9.11 Convolutional Networks and the History of Deep Learning 359
10 Sequence Modeling: Recurrent and Recursive Nets 363
10.1 Unfolding Computational Graphs 365
10.2 Recurrent Neural Networks 368
10.3 Bidirectional RNNs 383
10.4 Encoder-Decoder Sequence-to-Sequence Architectures 385
10.5 Deep Recurrent Networks 387
10.6 Recursive Neural Networks 388
10.7 The Challenge of Long-Term Dependencies 390
10.8 Echo State Networks 392
10.9 Leaky Units and Other Strategies for Multiple Time Scales 395
10.10 The Long Short-Term Memory and Other Gated RNNs 397
10.11 Optimization for Long-Term Dependencies 401
10.12 Explicit Memory 405
11 Practical Methodology 409
11.1 Performance Metrics 410
11.2 DefaultBaselineModels 413
11.3 Determining Whether to Gather More Data 414
11.4 Selecting Hyperparameters 415
11.5 Debugging Strategies 424
11.6 Example: Multi-Digit Number Recognition 428
12 Applications 431
12.1 Large-Scale Deep Learning 431
12.2 Computer Vision.440
12.3 Speech Recognition 446
12.4 Natural Language Processing 448
12.5 Other Applications 465
III Deep Learning Research 475
13 Linear Factor Models 479
13.1 Probabilistic PCA and Factor Analysis 480
13.2 Independent Component Analysis (ICA) 481
13.3 Slow Feature Analysis.484
13.4 Sparse Coding 486
13.5 Manifold Interpretation of PCA 489
14 Autoencoders 493
14.1 Undercomplete Autoencoders 494
14.2 Regularized Autoencoders 495
14.3 Representational Power, Layer Size and Depth 499
14.4 Stochastic Encodersand Decoders 500
14.5 Denoising Autoencoders501
14.6 Learning Manifolds with Autoencoders 506
14.7 Contractive Autoencoders 510
14.8 Predictive Sparse Decomposition 514
14.9 Applications of Autoencoders515
15 Representation Learning 517
15.1 Greedy Layer-Wise Unsupervised Pretraining 519
15.2 Transfer Learning and Domain Adaptation 526
15.3 Semi-Supervised Disentangling of Causal Factors 532
15.4 Distributed Representation 536
15.5 Exponential Gains from Depth 543
15.6 Providing Clues to Discover Underlying Causes 544
16 Structured Probabilistic Models for Deep Learning 549
16.1 The Challenge of Unstructured Modeling 550
16.2 Using Graphs to Describe Model Structure 554
16.3 Sampling from Graphical Models 570
16.4 Advantages of Structured Modeling 572
16.5 Learning about Dependencies 572
16.6 Inferenceand Approximate Inference 573
16.7 The Deep Learning Approach to Structured Probabilistic Models 575
17 Monte Carlo Methods 581
17.1 Sampling and Monte Carlo Methods 581
17.2 Importance Sampling 583
17.3 Markov Chain Monte Carlo Methods 586
17.4 Gibbs Sampling 590
17.5 The Challenge of Mixing between Separated Modes 591
18 Confronting the Partition Function 597
18.1 The Log-Likelihood Gradient 598
18.2 Stochastic Maximum Likelihood and Contrastive Divergence 599
18.3 Pseudolikelihood 607
18.4 Score Matching and Ratio Matching 609
18.5 DenoisingScore Matching 611
18.6 Noise-Contrastive Estimation 612
18.7 Estimatingthe Partition Function 614
19 Approximate Inference 623
19.1 Inferenceas Optimization 624
19.2 Expectation Maximization 626
19.3 MAP Inferenceand Sparse Coding 627
19.4 Variational Inferenceand Learning 629
19.5 Learned Approximate Inference 642
20 Deep Generative Models 645
20.1 Boltzmann Machines 645
20.2 Restricted Boltzmann Machines 647
20.3 Deep Belief Networks 651
20.4 Deep Boltzmann Machines 654
20.5 Boltzmann Machines for Real-Valued Data 667
20.6 Convolutional Boltzmann Machines 673
20.7 Boltzmann Machines for Structured or Sequential Outputs 675
20.8 Other Boltzmann Machines.677
20.9 Back-Propagation through Random Operations 678
20.10 Directed Generative Nets 682
20.11 Drawing Samples from Autoencoders 701
20.12 Generative Stochastic Networks 704
20.13 Other Generation Schemes 706
20.14 Evaluating Generative Models 707
20.15 Conclusion 710
Bibliography 711
Index 767
《朱自清散文》内容简介:《朱自清散文》为现代散文大家朱自清散文精选集,本书稿所收入的篇目大多广为流传,包括历来都被作为白话
计算理论是计算机科学的理论基础。《计算理论基础》(第2版)介绍了计算理论最核心、最基本的内容,包括形式语言与自动机、可计算性
《博客园开发者征途·你必须知道的.NET》来自于微软MVP的最新技术心得和感悟,将技术问题以生动易懂的语言展开,层层深入,以例说
《大道PHP:LAMP+Zend+开源框架整合开发与实战》以PHP应用程序开发为主题,对实践中必不可少的各项重要技术进行了全面介绍与系统
《阅读摄影:郭力昕摄影批评》内容简介:《阅读摄影》是一部呈现郭力昕这十五年间关心当代摄影实践与发展的相对完整的批评性思考的
你有可能随时都能找到你想要找的,但这也意味着你随时会被想找你的人找到—用起来很爽却又有一点危险,位置服务就是如此。而绝大多
《从零开始学Flutter开发》内容简介:本书针对目前高速发展的Flutter跨平台移动开发技术方案,从零开始深入讲解其中涉及的技术点,
Visual Basic程序设计基础 节选 《高等学校计算机程序设计课程系列教材·Visual Basic程序设计基础》根据教育部高等学校计算机基础课程教学指导...
《十九世纪文学主流Ⅱ:德国的浪漫派》内容简介:勃兰兑斯在哥本哈根大学的讲演汇编成《十九世纪文学主流》,纵论法、德、英诸国浪
《AcceleratedC++中文版》给人的印象会如此深刻呢?这是因为:●它一开始就向读者教导那些最有用的概念,而不是那些简单的注释读者
《五凉史》内容简介:◆“十六国史新编”之一,著名历史学家赵向群代表作全新修订。◆汇集传世史料与出土文献,还原魏晋南北朝大分
《博物馆窜行记》内容简介:本书收录了28篇腾讯·大家专栏作家顺受牵猴在欧美各博物馆窜行的所见所闻、所思所想。本书可以说是另类
代数多重网格方法原理及图像工程应用 本书特色 本书以代数多重网格方法为主题,对代数多重网格方法的理论进行了初步探讨,并将其应用到图像工程的多个领域,如清晰度检测...
Withover250,000appstochoosefrominApplesAppStore,youcanmakeyouriPhoneoriPodTouchd...
《游戏经济:以社交媒体游戏促进业务增长》内容简介:社交媒体游戏以其富有曲折的故事情节、情感体验和互动性,令用户着迷,如果能
模型制作基础手册 内容简介 本书可以作为建筑、景观建筑、室内设计以及其他相关专业的学生所使用的初级读物。其他一些人,例如,戏剧学学生、历史学家和考古学家等,也会...
《Serverless架构:无服务器应用与AWS Lambda》内容简介:无服务器是软件架构世界中的热门新话题,它充分利用大量的云平台服务,让
《出发!可爱的虫虫世界》内容简介:“蛋蛋学校万物探秘之旅”是国内原创的一套极富趣味性和知识性的探索万物的科普漫画绘本。讲述
瑞萨M16C/62P单片机原理和应用 内容简介 本书介绍瑞萨科技股份公司*近推出的16位M16C/62P单片机的工作原理、性能特点及使用方法。M16C/62P单...
实际案例分析是一种从用户角度定义软件系统外在特征的方法。本书对这种前沿的软件开发技术提供了清晰、实用的介绍。通过诸多实例