王达《深入理解计算机网络》

王达《深入理解计算机网络》

作者:王达

出版社:机械工业出版社

出版年:2013-1-1

评分:8.2

ISBN:9787111411888

所属分类:网络科技

书刊介绍

内容简介

《深入理解计算机网络》是计算机网络领域的扛鼎之作,由有20余年从业经验的优秀网络技术工程师兼全国网管技能水平开始认证专家王达老师撰写,51CTO技术社区鼎力推荐,权威性毋庸置疑。内容方面,本书结合最新计算机网络技术,全面、系统、深入地阐述了计算机网络的体系结构、工作原理,以及各种通信协议实现原理,能满足读者系统和深入地学习和研究计算机网络技术的需求。阅读体验上,近600幅图表、形象的比喻和丰富的案例使得本书通俗易懂,能极大地降低学习难度。除此之外,为了便于老师教学,本书还提供精心制作的教学PPT。

全书共11章:第1章详细介绍了数制与编码相关的知识;第2章宏观地讲解了计算机网络的组成、应用、分类,以及计算机网络的拓扑结构;第3章深入地讲解了典型的计算机网络体系结构、计算机网络体系结构的通信原理和通信协议,以及网络体系结构设计时的考虑;第4~7和10~11分别系统且深入地讲解了物理层、数据链路层、介质访问控制子层、网络层、传输层和应用层的作用、技术细节和实现原理;第8章深入地探讨了IP地址和子网,不仅讲解了IPV4相关技术,也对最新的IPV6相关技术做了深入的探讨;第9章系统介绍了RIP、OSPF、IS-IS、BGP等各种路由协议及其实现原理。

《深入理解计算机网络》既适合想全面深入了解计算机网络技术的网络工程师们深入学习和作为工作时的参考手册,又适合各高等院校的老师和学生们用作系统学习计算机网络技术的教材。

作品目录

前言

第1章 数制与编码 / 1

1.1 数制概述 / 2

1.1.1 常见数制类型及表示方法 / 2

1.1.2 不同数制之间的对应关系 / 3

1.2 不同数制间的相互转换 / 4

1.2.1 非十进制数转换成十进制数 / 4

1.2.2 十进制数转换成非十进制数 / 6

1.2.3 非十进制数之间的相互转换 / 9

1.3 二进制数运算 / 10

1.3.1 二进制四则算术运算 / 11

1.3.2 二进制逻辑运算 / 13

1.4 二进制数的表示形式 / 15

1.4.1 二进制数的真值和字长 / 15

1.4.2 二进制数的四种表示形式 / 16

1.4.3 补码的加减法运算 / 19

第2章 计算机网络概述 / 23

2.1 计算机网络概述 / 24

2.1.1 计算机网络的定义 / 24

2.1.2 计算机网络的发展历史 / 25

2.1.3 计算机网络的基本组成 / 32

2.1.4 计算机网络的主要应用 / 34

2.2 计算机网络的分类 / 36

2.2.1 按网络所覆盖的地理范围分 / 37

2.2.2 按网络管理模式分 / 39

2.2.3 按传输方式分 / 43

2.3 计算机网络拓扑结构 / 44

2.3.1 网络拓扑结构相关基本概念 / 44

2.3.2 星型拓扑结构 / 45

2.3.3 环形拓扑结构 / 49

2.3.4 总线型拓扑结构 / 54

2.3.5 树形拓扑结构 / 59

2.3.6 网状拓扑结构 / 60

2.3.7 混合型拓扑结构 / 62

2.3.8 无线局域网的两种拓扑结构 / 64

第3章 计算机网络体系结构 / 66

3.1 典型计算机网络体系结构 / 67

3.1.1 OSI/RM体系结构 / 67

3.1.2 TCP/IP协议体系结构 / 70

3.1.3 局域网体系结构 / 71

3.1.4 例说网络体系结构各层主要功能 / 73

3.1.5 OSI/RM和TCP/IP协议体系结构的比较 / 75

3.2 计算机网络体系结构通信原理 / 77

3.2.1 网络体系结构的数据通信原理 / 77

3.2.2 网络体系结构的对等通信原理 / 79

3.3 网络体系结构的设计考虑 / 82

3.3.1 网络体系结构中的层次划分依据 / 82

3.3.2 网络体系结构分层的好处 / 85

3.4 网络体系结构中的通信协议 / 86

3.4.1 理解计算机网络通信协议 / 86

3.4.2 网络通信协议的三要素 / 87

第4章 物理层 / 89

4.1 物理层概述 / 90

4.1.1 物理层的主要作用 / 90

4.1.2 物理层所定义的特性 / 91

4.2 数据通信基础 / 97

4.2.1 通信子网与资源子网 / 97

4.2.2 数据通信系统基本模型 / 98

4.2.3 数据通信的几个基本概念 / 99

4.2.4 数据传输类型 / 101

4.2.5 数据传输方式 / 105

4.2.6 数据传输模式 / 106

4.2.7 数据通信方式 / 108

4.3 数据传输速率与信道带宽 / 111

4.3.1 传输速率与信道带宽的基本概念 / 111

4.3.2 数字信号不失真传输的最大传输速率限制 / 112

4.3.3 模拟信号不失真还原的最小采样频率限制 / 114

4.4 数字基带信号编码 / 115

4.4.1 矩形脉冲数字信号基本波形 / 116

4.4.2 数字基带信号的传输码型 / 119

4.5 信号调制与解调 / 125

4.5.1 调制与解调的关键术语 / 125

4.5.2 ASK调制与解调 / 127

4.5.3 FSK调制与解调 / 130

4.5.4 PSK调制与解调 / 135

4.6 物理层传输介质 / 140

4.6.1 导向性传输介质 / 141

4.6.2 光纤结构及主要附件 / 147

4.6.3 非导向介质 / 151

4.7 信道多路复用技术 / 152

4.7.1 频分复用及其原理 / 152

4.7.2 时分复用及其原理 / 154

4.7.3 波分复用及其原理 / 156

4.8 物理层接口 / 158

4.8.1 串行接口标准 / 158

4.8.2 RS-232串行接口标准 / 159

4.8.3 其他EIA标准接口 / 163

4.8.4 X.21、X.24、X.36和EIA-530接口规范 / 165

第5章 数据链路层 / 169

5.1 数据链路层基础 / 170

5.1.1 划分数据链路层的必要性 / 170

5.1.2 数据链路层结构 / 172

5.2 数据链路层主要功能及实现原理 / 175

5.2.1 数据链路管理 / 175

5.2.2 数据帧封装和透明传输 / 177

5.2.3 差错控制 / 180

5.2.4 流量控制 / 182

5.3 差错控制方案 / 183

5.3.1 奇偶校验码检错方案 / 183

5.3.2 循环冗余校验检错方案 / 185

5.3.3 反馈检测法 / 187

5.3.4 空闲重发请求方案 / 188

5.3.5 连续重发请求方案 / 190

5.3.6 海明纠错码 / 194

5.4 流量控制 / 198

5.4.1 XON/XOFF流量控制方案 / 198

5.4.2 滑动窗口机制 / 199

5.5 面向字符的BSC协议 / 202

5.5.1 BSC控制字符和数据块结构 / 202

5.5.2 BSC协议数据透明传输原理 / 204

5.6 面向比特的SDLC和HDLC协议 / 205

5.6.1 HDLC链路结构和操作方式 / 206

5.6.2 SDLC/HDLC帧结构 / 207

5.6.3 SDLC/HDLC帧类型及其标识方法 / 210

5.7 面向字符的PPP同步传输协议 / 212

5.7.1 PPP简介 / 212

5.7.2 PPP帧结构和透明传输原理 / 213

5.7.3 PPP链路建立、使用和拆除流程 / 215

5.7.4 PPP的PAP/CHAP身份认证 / 216

5.8 数据链路层主要网络设备 / 218

5.8.1 计算机网卡 / 218

5.8.2 网桥及其工作原理 / 221

5.8.3 二层交换机概述 / 224

5.8.4 二层交换原理 / 228

第6章 介质访问控制子层 / 231

6.1 MAC子层基础 / 232

6.1.1 两种信道类型 / 232

6.1.2 MAC子层概述 / 234

6.1.3 介质争用综述 / 235

6.2 CSMA介质访问控制原理 / 237

6.2.1 非-坚持算法 / 237

6.2.2 1-坚持算法 / 238

6.2.3 P-坚持算法 / 239

6.3 CSMA/CD介质访问控制原理 / 240

6.3.1 CSMA/CD原理综述 / 241

6.3.2 冲突检测原理 / 242

6.3.3 冲突避让原理 / 243

6.3.4 CSMA/CD的不足 / 245

6.4 局域网标准及以太网帧格式 / 246

6.4.1 IEEE 802系列局域网标准 / 246

6.4.2 以太网帧格式综述 / 247

6.4.3 以太网LLC帧头部格式 / 251

6.4.4 以太网SNAP头部格式 / 251

6.4.5 以太网MAC帧 / 253

6.5 标准以太网规范及体系结构 / 255

6.5.1 标准以太网规范 / 255

6.5.2 标准以太网物理层结构 / 256

6.6 快速以太网规范及体系结构 / 258

6.6.1 快速以太网规范 / 259

6.6.2 快速以太网物理层结构 / 263

6.7 千兆以太网规范及体系结构 / 264

6.7.1 千兆以太网规范 / 264

6.7.2 1000Base-T以太网技术 / 267

6.7.3 IEEE千兆以太网物理层结构 / 269

6.8 万兆以太网规范及体系结构 / 270

6.8.1 万兆以太网规范 / 270

6.8.2 万兆以太网的物理层结构 / 273

6.9 IEEE 802.1d协议 / 274

6.9.1 理解“网络环路” / 274

6.9.2 STP简介 / 275

6.9.3 STP的基本工作原理 / 276

6.9.4 STP的不足和增强技术 / 278

6.10 IEEE 802.1q协议 / 279

6.10.1 划分VLAN的目的 / 279

6.10.2 理解VLAN的形成和工作原理 / 280

6.10.3 IEEE 802.1q帧头部格式 / 282

6.11 IEEE 802.1w协议 / 284

6.12 IEEE 802.1s协议 / 286

6.12.1 MSTP简介 / 286

6.12.2 MST区域及工作原理 / 289

6.13 IEEE 802.1x协议 / 291

6.13.1 IEEE 802.1x认证设备角色 / 291

6.13.2 IEEE 802.1x主机模式 / 292

6.13.3 IEEE 802.1x认证流程 / 294

6.14 主要WLAN标准与技术 / 297

6.14.1 IEEE 802.11b规范主要特性 / 298

6.14.2 IEEE 802.11a规范主要特性 / 301

6.14.3 IEEE 802.11g规范主要特性 / 303

6.14.4 IEEE 802.11n规范主要特性 / 304

6.14.5 两个未正式发布的新规范简介 / 305

6.14.6 其他主要WLAN规范 / 306

6.14.7 WLAN MAC帧格式 / 308

第7章 网络层 / 311

7.1 网络层概述 / 312

7.1.1 划分网络层的必要性 / 312

7.1.2 网络层主要作用 / 314

7.2 网络层数据交换及相关技术 / 315

7.2.1 线路交换 / 316

7.2.2 存储–转发 / 317

7.2.3 虚电路分组交换 / 320

7.2.4 数据报分组交换 / 322

7.2.5 虚电路交换和数据报交换的比较 / 323

7.3 网络层协议及报文格式 / 324

7.3.1 IP协议基本功能 / 325

7.3.2 IPv4的不足 / 326

7.3.3 IPv6的主要优势 / 327

7.3.4 IPv4数据报头部格式 / 328

7.3.5 IPv6数据报头部格式 / 332

7.3.6 IPv6扩展报头 / 335

7.3.7 IPv4数据报的封装与解封装 / 336

7.3.8 IPv4数据报的分段与重组 / 338

7.3.9 ARP协议报文格式及ARP表 / 339

7.3.10 ARP地址解析原理 / 341

7.3.11 ICMP协议及报文格式 / 342

7.3.12 IPv6协议簇中的其他协议 / 345

7.4 路由和路由算法 / 347

7.4.1 路由的分类 / 348

7.4.2 路由算法基础 / 352

7.4.3 路由表基础 / 355

7.4.4 路由优先级  / 356

7.4.5 路由算法设计目标和设计考虑 / 357

7.5 几种主要的路由算法解析 / 359

7.5.1 最短路径路由算法 / 359

7.5.2 扩散算法 / 362

7.5.3 距离矢量路由算法 / 363

7.5.4 链路状态路由算法 / 367

7.6 网络拥塞控制方法和原理 / 371

7.6.1 网络拥塞控制方法 / 371

7.6.2 死锁及其预防 / 374

7.7 网络层设备及主要技术 / 376

7.7.1 路由器主要硬件技术 / 376

7.7.2 路由器主要软件技术 / 381

7.7.3 三层交换机 / 385

7.7.4 三层交换机硬件结构 / 386

7.7.5 三层交换原理 / 387

7.7.6 三层交换示例 / 389

7.7.7 三层交换机和路由器的主要区别 / 391

第8章 IP地址和子网 / 393

8.1 IPv4地址 / 394

8.1.1 IPv4地址基本格式 / 394

8.1.2 子网掩码 / 395

8.1.3 IPv4地址的基本分类 / 396

8.1.4 有类/无类IPv4网络 / 400

8.1.5 网络地址、主机地址和广播地址 / 402

8.1.6 IPv4地址前缀表示形式 / 404

8.1.7 几种特殊的IPv4地址 / 405

8.2 IPv4子网划分与聚合 / 407

8.2.1 VLSM子网划分的基本思想 / 407

8.2.2 全0子网与全1子网 / 408

8.2.3 VLSM子网划分方法 / 409

8.2.4 VLSM子网划分示例 / 410

8.2.5 子网聚合方法及示例 / 413

8.3 IPv4 NAT基础 / 415

8.3.1 NAT的主要应用 / 416

8.3.2 与NAT相关的主要术语 / 416

8.3.3 NAT地址基本转换原理 / 419

8.3.4 NAT类型 / 420

8.4 IPv6地址基础 / 422

8.4.1 IPv6地址表示形式 / 422

8.4.2 IPv6地址中的二进制数与十六进制转换 / 424

8.5 IPv6地址类型 / 425

8.5.1 IPv6单播地址 / 426

8.5.2 IPv6组播地址 / 430

8.5.3 IPv6任播地址 / 431

8.5.4 IPv6主机和路由器地址 / 432

8.5.5 IPv6地址前缀表示形式 / 433

8.6 IPv6地址自动配置 / 434

8.6.1 IPv6地址自动配置的类型 / 434

8.6.2 自动配置过程 / 435

第9章 路由协议及工作原理 / 437

9.1 RIP路由协议 / 438

9.1.1 RIP路由度量机制 / 438

9.1.2 RIP路由更新机制 / 440

9.1.3 RIP路由收敛机制 / 442

9.1.4 RIP报文格式 / 445

9.2 OSPF路由协议 / 446

9.2.1 OSPF协议简介 / 446

9.2.2 OSPF的AS与Area / 448

9.2.3 OSPF网络路由器类型 / 449

9.2.4 DR和BDR / 450

9.2.5 OSPF LSA类型 / 452

9.2.6 Backbone(骨干)区域 / 454

9.2.7 Stub(末梢)区域 / 455

9.2.8 Totally Stub区域和NSSA区域 / 456

9.2.9 OSPF路由计算基本过程 / 458

9.2.10 OSPF报头格式 / 460

9.3 IS-IS路由协议 / 464

9.3.1 ISO网络基础 / 464

9.3.2 IS-IS路由协议基本术语 / 465

9.3.3 IS-IS路由及路由器类型 / 468

9.3.4 IS-IS与OSPF区域及路由器邻接关系比较 / 469

9.3.5 IS-IS PDU报头格式 / 472

9.3.6 IIH PDU包格式 / 473

9.3.7 LSP PDU包格式 / 475

9.3.8 SNP PDU包格式 / 476

9.3.9 IS-IS PDU可变字段格式 / 477

9.3.10 IS-IS的两种地址格式 / 478

9.3.11 IS-IS与OSPF的比较 / 480

9.3.12 IS-IS最短路径计算和路由表生成原理 / 481

9.4 BGP / 483

9.4.1 BGP概述 / 483

9.4.2 BGP AS / 484

9.4.3 BGP地址簇模型 / 486

9.4.4 BGP speaker和peer的关系 / 488

9.4.5 BGP peer会话建立 / 490

9.4.6 BGP的路由属性 / 490

9.4.7 BGP的消息类型及报文格式 / 494

第10章 传输层 / 498

10.1 传输层概述 / 499

10.1.1 划分传输层的必要性 / 499

10.1.2 传输层的端到端传输服务 / 501

10.1.3 传输层服务 / 502

10.1.4 TSAP和TPDU / 504

10.1.5 传输连接建立阶段的主要TPDU / 507

10.1.6 数据传输阶段的主要TPDU / 508

10.1.7 传输连接释放阶段的TPDU / 512

10.1.8 传输服务原语 / 513

10.2 传输层服务功能 / 517

10.2.1 传输层寻址方案 / 517

10.2.2 传输连接建立 / 520

10.2.3 重复传输连接的解决方法 / 521

10.2.4 数据传输 / 524

10.2.5 传输连接释放 / 525

10.2.6 流量控制 / 526

10.2.7 多路复用 / 529

10.2.8 崩溃恢复 / 529

10.3 TCP概述 / 530

10.3.1 TCP的主要特性 / 530

10.3.2 TCP数据段格式 / 531

10.3.3 TCP套接字 / 534

10.3.4 TCP端口 / 537

10.3.5 TCP连接的状态转移 / 539

10.3.6 TCP传输连接的建立 / 542

10.3.7 TCP传输连接的释放 / 544

10.4 TCP的可靠传输 / 546

10.4.1 TCP的数据段确认机制 / 547

10.4.2 TCP的超时重传机制 / 549

10.4.3 TCP的选择性确认机制 / 550

10.5 TCP的流量控制 / 552

10.5.1 TCP的流量控制简介 / 552

10.5.2 基于传输效率的考虑 / 554

10.6 TCP的拥塞控制 / 555

10.6.1 TCP拥塞控制简介 / 555

10.6.2 TCP拥塞控制方案 / 557

10.7 UDP概述 / 560

10.7.1 UDP的基础知识 / 560

10.7.2 UDP数据报头部格式 / 561

第11章 应用层 / 563

11.1 应用层概述 / 564

11.1.1 应用层组件及典型应用服务 / 564

11.1.2 应用层的C/S服务模型 / 565

11.2 Web服务基础 / 566

11.2.1 Web服务模型 / 566

11.2.2 万维网的全球统一标识 / 567

11.2.3 万维网文档标记 / 569

11.2.4 HTML文档类型 / 570

11.2.5 HTML文档的“三超属性” / 572

11.2.6 HTTP服务访问基本流程 / 573

11.2.7 HTTP的主要特性 / 574

11.2.8 HTTP请求报文格式 / 575

11.2.9 HTTP响应报文格式 / 577

11.3 DNS服务 / 579

11.3.1 DNS技术的引入背景 / 580

11.3.2 DNS命名方案的设计思想 / 582

11.3.3 DNS名称空间 / 583

11.3.4 DNS名称服务器 / 586

11.3.5 DNS报文格式 / 589

11.3.6 DNS数据传输方式 / 593

11.3.7 DNS递归解析原理 / 594

11.3.8 DNS迭代解析原理 / 596

11.4 DHCP服务 / 599

11.4.1 BOOTP和DHCP简介 / 599

11.4.2 DHCP服务的主要功能及应用环境 / 600

相关推荐

微信二维码