Haralambos (Babis) Marmanis 博士是一个把机器学习技术应用于工业界的先行者,也是供应管理的世界级专家。Dmitry Babenko曾经为银行、保险、供应链管理与商务智能公司设计过应用与基础架构。
本书拥有者可以通过 www.manning.com/AlgorithmsoftheIntelligentWeb在线获得作者的信息、样例代码与免费的电子版本。
Dr. Haralambos (Babis) Marmanis is a pioneer in the adoption of machine learning techniques for industrial solutions, and also a world expert in supply management. He has about twenty years of experience in developing professional software. Currently, he is the director of R&D and chief architect, for expense management solutions, at Emptoris, Inc. Babis holds a Ph.D. in applied mathematics from Brown University, an M.S. degree in theoretical and applied mechanics from the University of Illinois at Urbana-Champaign, and B.S. and M.S. degrees in civil engineering from the Aristotle University of Thessaloniki in Greece. He was the recipient of the Sigma Xi award for innovative research in 2000, and he is the author of numerous publications in peer-reviewed international scientific journals, conferences, and technical periodicals.
Dmitry Babenko is the lead for the data warehouse infrastructure at Emptoris, Inc. He is a software engineer and architect with 13 years of experience in the IT industry. He has designed and built a wide variety of applications and infrastructure frameworks for banking, insurance, supply-chain management, and business intelligence companies. He received a M.S. degree in computer science from Belarussian State University of Informatics and Radioelectronics.
前言 XV
致谢 XIX
关于本书 XXI
1 什么是智能Web? 1
1.1 智能Web应用实例 3
1.2 智能应用的基本要素 4
1.3 什么应用会受益于智能? 5
1.3.1 社交网络 6
1.3.2 Mashup 7
1.3.3 门户网站 8
1.3.4 维基 9
1.3.5 文件分享网站 9
1.3.6 网络游戏 11
1.4 如何构建智能应用? 11
1.4.1 检查功能和数据 12
1.4.2 获取更多的数据 12
1.5 机器学习、数据挖掘及其他 16
1.6 智能应用中八个常见的误区 17
1.6.1 误区1:数据是可靠的 18
1.6.2 误区2:计算能马上完成 19
1.6.3 误区3:不用考虑数据规模 19
1.6.4 误区4:不考虑解决方案的可扩展性 19
1.6.5 误区5:随处使用同样的方法 19
1.6.6 误区6:总是能知道计算时间 20
1.6.7 误区7:复杂的模型更好 20
1.6.8 误区8:存在无偏见的模型 20
1.7 小结 20
1.8 参考资料 21
2 搜索 22
2.1 用Lucene实现搜索 23
2.1.1 理解Lucene代码 24
2.1.2 搜索的基本步骤 31
2.2 为什么搜索不仅仅是索引? 33
2.3 用链接分析改进搜索结果 35
2.3.1 PageRank简介 35
2.3.2 计算PageRank向量 37
2.3.3 alpha:网页间跳转的影响 38
2.3.4 理解幂方法 40
2.3.5 结合索引分值和PageRank分值 45
2.4 根据用户点击改进搜索结果 47
2.4.1 用户点击初探 48
2.4.2 朴素贝叶斯分类器的使用 50
2.4.3 整合Lucene索引、PageRank和用户点击 54
2.5 Word、PDF等无链接文档的排序 58
2.5.1 DocRank算法简介 58
2.5.2 DocRank的原理 60
2.6 大规模实现的有关问题 65
2.7 用户得到了想要的结果吗?精确度和查全率 67
2.8 总结 69
2.9 To Do 70
2.10 参考资料 72
3 推荐系统 73
3.1 一个在线音乐商店:基本概念 74
3.1.1 距离与相似度的概念 75
3.1.2 走近相似度的计算 80
3.1.3 什么才是最好的相似度计算公式? 83
3.2 推荐引擎是怎么工作的 84
3.2.1 基于相似用户的推荐 85
3.2.2 基于相似条目的推荐 94
3.2.3 基于内容的推荐 98
3.3 推荐朋友、文章与新闻报道 104
3.3.1 MyDiggSpace.com简介 105
3.3.2 发现朋友 106
3.3.3 DiggDelphi的内部工作机制 108
3.4 像Netflix.com那样推荐电影 114
3.4.1 电影数据集的介绍及推荐器 114
3.4.2 数据标准化与相关系数 117
3.5 大规模的实现与评估 123
3.6 总结 124
3.7 To Do 125
3.8 参考资料 127
4 聚类:事物的分组 128
4.1 聚类的需求 129
4.1.1 网站中的用户组:案例研究 129
4.1.2 用SQL order by子句分组 131
4.1.3 用数组排序分组 132
4.2 聚类算法概述 135
4.2.1 基于分组结构的聚类算法分类 136
4.2.2 基于数据类型和结构的聚类算法分类 137
4.2.3 根据数据规模的聚类算法分类 137
4.3 基于链接的算法 138
4.3.1 树状图:基本的聚类数据结构 139
4.3.2 基于链接的算法概况 141
4.3.3 单链接算法 142
4.3.4 平均链接算法 144
4.3.5 最小生成树算法 147
4.4 k-means算法 149
4.4.1 初识k-means算法 150
4.4.2 k-means的内部原理 151
4.5 鲁棒的链接型聚类(ROCK) 153
4.5.1 ROCK简介 154
4.5.2 为什么ROCK这么强大? 154
4.6 DBSCAN 159
4.6.1 基于密度的算法简介 159
4.6.2 DBSCAN的原理 162
4.7 超大规模数据聚类 165
4.7.1 计算复杂性 166
4.7.2 高维度 167
4.8 总结 168
4.9 To Do 169
4.10 参考资料 171
5 分类:把事物放到它该在的地方 172
5.1 对分类的需求 173
5.2 分类器的概述 177
5.2.1 结构分类算法 178
5.2.2 统计分类算法 180
5.2.3 分类器的生命周期 181
5.3 邮件的自动归类与垃圾邮件过滤 182
5.3.1 朴素贝叶斯分类 184
5.3.2 基于规则的分类 197
5.4 用神经网络做欺诈检测 210
5.4.1 交易数据中关于欺诈检测的一个用例 210
5.4.2 神经网络概览 212
5.4.3 一个可用的神经网络欺诈检测器 214
5.4.4 神经网络欺诈检测器剖析 218
5.4.5 创建通用神经网络的基类 226
5.5 你的结果可信吗? 232
5.6 大数据集的分类 235
5.7 总结 237
5.8 To Do 239
5.9 参考资料 242
6 分类器组合 244
6.1 信贷价值:分类器组合案例研究 246
6.1.1 数据的简要说明 247
6.1.2 为真实问题生成人工数据 250
6.2 用单分类器做信用评估 255
6.2.1 朴素贝叶斯的基准线 255
6.2.2 决策树基准线 258
6.2.3 神经网络的基准线 260
6.3 在同一个数据集中比较多个分类器 263
6.3.1 McNemar检验 264
6.3.2 差额比例检验 266
6.3.3 Cochran Q检验与F检验 268
6.4 bagging: bootstrap聚合(bootstrap aggregating) 270
6.4.1 bagging实例 272
6.4.2 bagging分类器底层细节 274
6.4.3 分类器集成 276
6.5 boosting:一种迭代提高的方法 279
6.5.1 boosting分类器实例 280
6.5.2 boosting分类器底层细节 282
6.6 总结 286
6.7 To Do 288
6.8 参考资料 292
7 智能技术大汇集:一个智能新闻门户 293
7.1 功能概览 295
7.2 获取并清洗内容 296
7.2.1 各就位、预备、开抓! 296
7.2.2 搜索预备知识回顾 298
7.2.3 一个抓取并处理好的新闻数据集 299
7.3 搜索新闻 301
7.4 分配新闻类别 304
7.4.1 顺序问题 304
7.4.2 使用NewsProcessor类进行分类 309
7.4.3 分类器 310
7.4.4 分类策略:超越底层的分类 313
7.5 用NewsProcessor类创建新闻分组 316
7.5.1 聚类全部文章 317
7.5.2 在一个新闻类别中聚类文章 321
7.6 基于用户评分的动态内容展示 325
7.7 总结 328
7.8 To Do 329
7.9 参考资料 333
附录A BeanShell简介 334
A.1 什么是BeanShell? 334
A.2 为什么使用BeanShell? 335
A.3 运行BeanShell 335
A.4 参考资料 336
附录B 网络采集 337
B.1 爬虫组件概况 337
B.1.1 采集的步骤 338
B.1.2 我们的简单爬虫 338
B.1.3 开源Web爬虫 339
B.2 参考资料 340
附录C 数学知识回顾 341
C.1 向量和矩阵 341
C.2 距离的度量 342
C.3 高级矩阵方法 344
C.4 参考资料 344
附录D 自然语言处理 345
D.1 参考资料 347
附录E 神经网络 348
E.1 参考资料 349
索引 350
版式设计的原理已经存在了几个世纪,除平面设计外,建筑设计、时装设计等很多领域都广泛地运用这些原理。本书通过挖掘日常生活中
《高端品牌是如何炼成的》内容简介:本书从六大视角解析高端品牌的底层逻辑。梦想法则和匠心法则,是塑造极具价值品牌产品的关键;
--------------------------------------------------------------------------------...
《哈农钢琴练指法(重点提示版)》内容简介:《哈农钢琴练指法(重点提示版)》已成为钢琴学习者必不可少的练习,这种练习将伴随他
《用户体验及其在通信产品开发中的应用》首先深入浅出地向读者介绍了用户体验的概念、理论基础、研究思路等;然后深入解析用户体
《痛苦典当行:南人诗歌绘本》内容简介:《痛苦典当行》精选“短诗王”南人的七十多首犀利诗作,搭配新锐插画师黄丽的三十多张奇诡
资深Linux/Unix系统管理专家兼架构师多年一线工作经验结晶,51CTO和ChinaUnix等知名社区联袂推荐。结合实际生产环境,从Linux虚拟
《百年战争》内容简介:1417年,英格兰军队在诺曼底登陆,百年战争的战火重燃,法军节节败退,在接下来充满戏剧性的30年中,英国人
《实用推荐系统》内容简介:本书要构建一个实用的“智能”推荐系统,不仅需要有好的算法,还需要了解接收推荐的用户。本书分为两部
《VisualC#2005从入门到精通/微软技术丛书》:微软技术丛书系列之一,建议一读!MicrosoftVisualC#功能强大、使用简单。本书全面介
《Android程序开发范例宝典》内容简介:本书紧密围绕开发人员在开发过程中遇到的实际问题和开发中应该掌握的技术,全面介绍了应用A
你该如何改善你的软件开发团队?这本精炼的书籍介绍了程序员度量,这样一种清晰客观的方式来确定、分析和讨论软件工程师的成败—
《刑法最新立法争议问题研究》内容简介:本书以《刑法修正案(九)》修法过程中及修法前后各方的意见、建议为主要研究对象,梳理、
本书的特点是:代替价多复杂的数学推导过程,给出了一系列简明的计算公式;避免了纯粹的理论叙述,给出了大量的设计实例;从系统
欢迎您选择一种更高效的学习HTML和CSS的方式。不管您设计和建立新网站,还是想更好地控制现有网站,都可以在《HTML&CSS设计与构建
桑原晃弥出生于日本广岛县,毕业于庆应义塾大学经济管理专业;曾任《行业报》记者、不动产公司企划、人事课长,后为自由撰稿人;
有人说Google让我们变得更笨,有人说Facebook出卖了我们的隐私,有人说Twitter将我们的注意力碎片化。在你担忧这些社会化媒体让我
代号为“Tiger”的下一个Java版本,不只是个小改动版。在语言核心中有超过100项以上的变动,同时有大量的对library与API所做的加
本书是一本架设与维护TCP/IP网络的完整指南,无论你是在职的系统管理员,还是需要访问Internet的家用系统用户,都可从本书获得帮
《软件之美》内容简介:行走在红尘里,每个人都会遇见暴风骤雨和诗情画意。“忧者见之而忧,喜者见之而喜”。一路上,我们会听见花