本书是由美国著名数学教育家撰写的经典教材,不仅介绍了向量代数、线性空间、线性变换、矩阵、行列式和二次型等传统授课内容,还介绍了线性代数在微分方程中的应用。书中内容独具特色,自成体系,理论和应用并重。书中习题丰富,并且提供了习题解答,便于课堂教学或自学。
本书篇幅适中,叙述简洁,通俗易懂,是一本非常好的线性代数入门教材,已被很多学校采用。
第0 章预备知识 1
I与微积分无关的预备知识 1
0.1 用直线上的点表示实数 1
0.2 用平面上的点表示实数对 1
0.3 极坐标 3
0.4 复数 4
0.5 复数的定义与代数性质4
0.6 复数作为实数的推广6
0.7 虚数单位i 6
0.8 习题 7
0.9 几何解释?模与辐角7
0.10 共轭复数 9
0.11 习题 9
0.12 数学归纳法 10
0.13 习题 12
0.14 必要条件和充分条件 12
II关于微积分的预备知识 13
0.15 导数概念 13
0.16 导数的基本性质 14
0.17 一些初等函数的导数 15
0.18 速度和加速度 15
0.19 面积问题与积分学的历史 16
0.20 用积分法构造新函数 17
0.21 积分的基本性质 17
0.22 指数函数 18
0.23 复指数 19
0.24 复数的极坐标形式 20
0.25 幂级数和函数级数 21
0.26 习题 22
第1 章向量代数 24
1.1 历史背景 24
1.2 实n 元组组成的向量空间 25
1.3 n 6 3 时n 维向量的几何描述 27
1.4 习题 29
1.5 点积 30
1.6 向量的模和范数 31
1.7 向量的正交 33
1.8 习题 34
1.9 投影? n 维空间中向量的夹角 35
1.10 单位坐标向量 37
1.11 习题 38
1.12 有限向量组的线性生成集 40
1.13 线性无关 41
1.14 基 43
1.15 习题 44
1.16 复数的n 元组构成的向量空间Cn 46
1.17 习题 47
第2 章向量代数在解析几何中的应用49
2.1 引言 49
2.2 n 维空间中的直线 50
2.3 Rn 中直线的一些简单性质 51
2.4 n 维空间中的直线和向量值函数 52
2.5 三维空间和二维空间中的直线 53
2.6 习题 55
2.7 n 维欧氏空间中的平面 56
2.8 平面和向量值函数 59
2.9 习题 59
2.10 R3 中两向量的叉积 61
2.11 用行列式表示叉积 63
2.12 习题 65
2.13 纯量三重积 66
2.14 解三元线性方程组的Cramer 法则 68
2.15 习题 69
2.16 R3 中平面的法向量 70
2.17 R3 中平面的线性笛卡儿方程 72
2.18 习题 73
2.19 二次曲线 74
2.20 二次曲线的离心率77
2.21 二次曲线的极坐标方程78
2.22 习题 79
2.23 一般二次曲线的笛卡儿方程 80
2.24 关于原点对称的二次曲线 81
2.25 椭圆和双曲线在标准位置时的笛卡儿方程 82
2.26 抛物线的笛卡儿方程 84
2.27 习题 85
2.28 关于二次曲线的综合性习题 86
第3 章线性空间 88
3.1 引言 88
3.2 线性空间的公理化定义 88
3.3 线性空间的实例 89
3.4 公理的简单推论 91
3.5 习题 92
3.6 线性空间的子空间 93
3.7 线性空间的线性相关组和线性无关组 94
3.8 基与维数 97
3.9 分量 98
3.10 习题 99
3.11 内积?欧氏空间?范数 100
3.12 欧氏空间中的正交性 103
3.13 习题 105
3.14 正交组的构造? Gram-Schmidt 方法 107
3.15 正交补?投影 111
3.16 用有限维子空间中的元素给出欧氏空间中元素的最优逼近 112
3.17 习题 114
第4 章线性变换?矩阵 115
4.1 线性变换 115
4.2 零化空间?值域 116
4.3 零化度?秩 117
4.4 习题 119
4.5 线性变换的代数运算 120
4.6 逆 122
4.7 一一线性变换 124
4.8 习题 125
4.9 基元素的象为指定值的线性变换 127
4.10 线性变换的矩阵表示 127
4.11 对角形矩阵表示的构造 132
4.12 习题 134
4.13 矩阵组成的线性空间 135
4.14 线性变换与矩阵之间的同构 136
4.15 矩阵的乘法 138
4.16 习题 140
4.17 在线性方程组中的应用 142
4.18 计算技术? Gauss-Jordan消元法 144
4.19 方阵的逆 148
4.20 习题 152
4.21 关于矩阵的综合性习题 153
第5 章行列式 155
5.1 引言 155
5.2 行列式函数公理的选择 156
5.3 行列式函数的公理 157
5.4 对角矩阵的行列式 158
5.5 上三角形矩阵的行列式 159
5.6 用Gauss-Jordan 消元法计算行列式 160
5.7 行列式函数的唯一性 160
5.8 习题 161
5.9 行列式的多重线性性 162
5.10 多重线性性的应用 164
5.11 行列式的乘积公式 165
5.12 非奇异矩阵的逆矩阵的行列式 166
5.13 行列式与向量组的线性无关性 166
5.14 分块对角矩阵的行列式 167
5.15 习题 168
5.16 行列式关于余子式的展开式 169
5.17 余子式矩阵 170
5.18 Cramer 法则 171
5.19 行列式按子式的展开式 172
5.20 习题 175
5.21 行列式函数的存在性 175
5.22 关于行列式的综合性习题 178
第6 章特征值与特征向量 180
6.1 具有对角矩阵表示的线性变换 180
6.2 线性变换的特征值与特征向量 181
6.3 属于不同特征值的特征向量的线性无关性 183
6.4 习题 184
6.5 有限维线性空间 185
6.6 三角化定理 186
6.7 特征多项式 189
6.8 有限维情形下特征值与特征向量的计算190
6.9 特征多项式根的积与和 193
6.10 习题 194
6.11 表示同一个线性变换的矩阵?相似矩阵 195
6.12 习题 199
6.13 Cayley-Hamilton 定理 200
6.14 习题 202
6.15 Jordan 标准型 203
6.16 关于特征值与特征向量的综合性习题 206
第7 章欧氏空间中线性变换的特征值 208
7.1 特征值与内积 208
7.2 Hermite 变换与斜Hermite变换 209
7.3 属于不同特征值的特征向量的正交性 210
7.4 习题 210
7.5 有限维空间中Hermite算子和斜Hermite 算子的标准正交特征向量组的存在性 211
7.6 Hermite 算子与斜Hermite算子的矩阵表示 212
7.7 Hermite 矩阵和斜Hermite矩阵?伴随矩阵 213
7.8 Hermite 矩阵与斜Hermite矩阵的对角化 214
7.9 酉矩阵?正交矩阵 215
7.10 习题 216
7.11 二次型 218
7.12 将实二次型化为对角形 220
7.13 对二次曲线的应用 221
7.14 习题 225
7.15 正定二次型 226
7.16 由二次型的值求对称变换的特征值 227
7.17 对称线性变换的极值性质 228
7.18 有限维情形 229
7.19 酉变换 230
7.20 习题 233
7.21 作用在函数空间上的对称算子和斜对称算子 233
7.22 习题 235
第8 章在线性微分方程中的应用 237
8.1 引言 237
8.2 关于一阶与二阶线性微分方程的结果的回顾 238
8.3 习题 239
8.4 n 阶线性微分方程 240
8.5 存在唯一性定理 241
8.6 齐次线性微分方程解空间的维数 242
8.7 常系数线性算子的代数 242
8.8 由算子的因式分解求常系数线性微分方程解的一组基 244
8.9 习题 247
8.10 齐次方程与非齐次方程之间的关系 248
8.11 求非齐次方程的一个特解?参数变易法 249
8.12 齐次线性微分方程n 线性无关解的Wronski矩阵的非奇异性 252
8.13 求非齐次方程特解的特殊方法?化为一阶线性微分方程组 254
8.14 求非齐次微分方程特解的零化子方法 254
8.15 习题 257
第9 章在微分方程组理论中的应用 260
9.1 引言 260
9.2 矩阵函数的微积分 262
9.3 矩阵幂级数?矩阵的范数 262
9.4 习题 264
9.5 指数矩阵 265
9.6 etA 所满足的微分方程 265
9.7 矩阵微分方程F0(t) = AF(t)的解的唯一性定理 266
9.8 关于指数矩阵的指数定律 267
9.9 常系数齐次线性微分方程组的存在唯一性定理 268
9.10 在特殊情形下etA 的计算 269
9.11 习题 273
9.12 计算etA 的Putzer方法 274
9.13 在特殊情形下计算etA的方法 277
9.14 习题 279
9.15 常系数非齐次线性微分方程组 279
9.16 习题 282
9.17 一般线性微分方程组Y 0(t)=P(t)Y (t)+Q(t) 283
9.18 求解齐次线性方程组的幂级数方法 286
9.19 习题 287
第10 章逐次逼近法 288
10.1 引言 288
10.2 在齐次线性方程组Y 0(t)= A(t)Y (t) 中的应用 288
10.3 逐次逼近序列的收敛性 289
10.4 用于一阶非线性方程组的逐次逼近法 292
10.5 一阶非线性方程组解的存在唯一性定理的证明 294
10.6 习题 295
10.7 逐次逼近与算子不动点 297
10.8 赋范线性空间 297
10.9 收缩算子 298
10.10 关于收缩算子的不动点定理 299
?10.11 不动点定理的应用 301
习题解答 304
索引 328
全世界中学生必读的励志经典 本书特色 20世纪*伟大的心灵导师和成功学大师、美国现代成人教育之父戴尔·卡耐基曾说过:“我们不能自由地选择成功,但我们可以用自己的...
阅读理解官方题库-考研英语-(二) 本书特色 《考研英语阅读理解官方题库》由金威主编,以《全国研究生入学考试英语大纲》为依据。为了保证考生有条不紊地达到高效率的...
二刻拍案惊奇 本书特色 《二刻拍案惊奇》是明代凌蒙初的拟话本小说集,它同《初刻拍案惊奇》一起,合称“二拍”,是我国古代短篇小说的宝库之一...
吕梁英雄传-赠读写达标手册 本书特色马烽、西戎所*的这本《吕梁英雄传/无障碍阅读红色经典系列》以吕梁山区的一个普通山村康家寨为叙事切入点,讲述了康家寨村民在中国...
红与黑 本书特色 《红与黑》是十九世纪法国批判现实主义文学的代表作品。《红与黑》的主人公于连,是韦里埃小城一木匠的儿子,年轻英俊、意志坚强、精明能干,从小希望借...
第二语言写作教学-文本互动 本书特色 随着移民人口的增加,教授第二语言写作已经成为学校的一项重要责任。本书收录了许多致力于这项重要工作的教师的故事,展示了他们从...
数学-六年级-小升初.竞赛对接-第2次修订-含单独一本参考答案 本书特色 《小升初·竞赛对接:数学(6年级)(第2次修订)》:重难点知识与竞赛中拓展的新知识——...
一句话改变人生--400位优秀教师的智慧感悟 本书特色 这是从400位优秀教师博大深远的心灵深处飞溅出来的600余朵浪花。这400位优秀教师的心灵深处会聚着智慧...
湘行散记 本书特色 时常听家长说起孩子不愿意读名著。想过为什么吗?编者认为一是没有选到好书,翻译、编译差,字体小,错字多,无插图、枯燥乏味...... 二是孩子...
骆驼祥子-不说谎的人 本书特色 本书是“琥珀经典文丛”之一。收录了老舍代表作《骆驼祥子》以及在1933到1943年写就的*精彩的中短篇小说《断魂枪》《马裤先生》...
初级会计学-(第8版) 本书特色 初级会计学是会计学专业的入门课程,本书根据初学者的认知规律,对教材结构和内容进行了精心的组织和安排,既强调会计理论的学习,又强...
本书是集体智慧的结晶。作者不是独立的个人,而是一个荟萃早期教育和幼儿数学教育专家的团队。该团队成员都来自美国芝加哥埃里克森儿童发展研究生院的早期数学教育项目。她...
西游记 第一卷:英文 内容简介 JourneytotheWestisamythologi-calnovelbasedonmanycenturiesofpopul...
大学英语六级词汇词根词缀高效记忆-轻松背单词 本书特色 “词根词缀前缀+分频”记忆法;利用先进的电脑统计技术,对历年考题中出现的大纲单词进行分频大学英语六级词汇...
长征-(上.下册) 本书特色 王树增《长征》自2006年出版以来,十年间荣获中国出版政府奖·优秀图书奖·优秀装帧设计奖、第十届中宣部精神文明建设“五个一工程奖”...
人类在认识世界的过程中,学会了用抽象、简洁的方程式来高度归纳科学规律。从亚里士多德、牛顿、爱因斯坦的时代直到今天,无数的
飞鸟集.新月集 本书特色《飞鸟集》是一部富于哲理的英文格言诗集,是泰戈尔的代表作之一,也是世界上*杰出的诗集之一,它共收录诗325首清丽的无标题小诗。白昼和黑夜...
数学爆发力1 内容简介 这两本书通篇都是以数德纳的萨姆·劳埃德《智力题百科》,这两本书通篇都是以数字、图形、逻辑等智力题的形式撰写的。根据这些问题,自己来思考、...
约翰·P.丹吉洛(John P.DAngelo)伊利诺伊大学厄巴纳一尚佩恩分校数学系教授,专注于复分析与CR几何的研究。1976年获普林斯顿大学博士学位,199...
离散与组合几何引论 内容简介 离散与组合几何学是一门新兴学科,主要研究离散几何对象的计数与设计问题、组合与极值问题。其特点是研究方法灵活、内容多样且有趣、应用十...