本书以经典理论与现代应用相结合的方式介绍了初等数论的基本概念和方法,内容包括整除、同余、二次剩余、原根以及整数的阶的讨论和计算。此外,书中附有60多位对数论有贡献的数学家的传略。
本书内容丰富,趣味性强,条理清晰,既可以作为高等院校计算机及相关专业的数论教材,也可以作为对数论和密码学感兴趣的读者的初级读物。
本书是数论课程的经典教材,自出版以来,深受读者好评,被美国加州大学伯克利分校,伊利诺伊大学,得克萨斯大学等数百所名校采用。
经典理论与现代应用的结合是本书的一大特色。第5版通过增强实例和练习,将数论的应用引入了更高的境界,同时更新并扩充了对密码学这一热点论题的讨论。与时俱进是本书的又一大特色,为使本版与最新的研究成果及近几年的新理论优美结合,作者花费了大量心血。本书还以别出心裁的习题安排而著名,书中收入的富于挑战性的习题旨在帮助读者探究数论中的关键概念,同时提供两类习题:一类是计算题;另一类是上机编程练习,这使得读者能够将数学理论与编程技巧实践联系起来。
目录
前言
符号表
何谓数论
第1章 整数
1.1 数和序列
1.2 和与积
1.3 数学归纳法
1.4 斐波那契数
1.5 整除性
第2章 整数的表示法和运算
2.1 整数的表示法
2.2 整数的计算机运算
2.3 整数运算的复杂度
第3章 素数和最大公因子
3.1 素数
3.2 素数的分布
3.3 最大公因子
3.4 欧几里得算法
3.5 算术基本定理
3.6 因子分解法和费马数
3.7 线性丢番图方程
第4章 同余
4.1 同余引言
4.2 线性同余方程
4.3 中国剩余定理
4.4 求解多项式同余方程
4.5 线性同余方程组
4.6 利用波拉德方法分解整数
第5章 同余的应用
5.1 整除性检验
5.2 万年历
5.3 循环赛赛程
5.4 散列函数
5.5 校验位
第6章 特殊的同余式
6.1 威尔逊定理和费马小定理
6.2 伪素数
6.3 欧拉定理
第7章 乘性函数
7.1 欧拉函数
7.2 因子和与因子个数
7.3 完全数和梅森素数
7.4 莫比乌斯反演
第8章 密码学
8.1 字符密码
8.2 分组密码和流密码
8.3 取幂密码
8.4 公钥密码
8.5 背包密码
8.6 密码协议及应用
第9章 原根
9.1 整数的阶和原根
9.2 素数的原根
9.3 原根的存在性
9.4 指数的算术
9.5 用整数的阶和原根进行素性检验
9.6 通用指数
第10章 原根与整数的阶的应用
10.1 伪随机数
10.2 埃尔伽莫密码系统
10.3 电话线缆绞接中的一个应用
第11章 二次剩余
11.1 二次剩余与二次非剩余
……
第12章 十进制分数与连分数
第13章 某些非线性丢番图方程
第14章 高斯整数
附录
参考文献
前言
符号表
何谓数论
第1章 整数
1.1 数和序列
1.2 和与积
1.3 数学归纳法
1.4 斐波那契数
1.5 整除性
第2章 整数的表示法和运算
2.1 整数的表示法
2.2 整数的计算机运算
2.3 整数运算的复杂度
第3章 素数和最大公因子
3.1 素数
3.2 素数的分布
3.3 最大公因子
3.4 欧几里得算法
3.5 算术基本定理
3.6 因子分解法和费马数
3.7 线性丢番图方程
第4章 同余
4.1 同余引言
4.2 线性同余方程
4.3 中国剩余定理
4.4 求解多项式同余方程
4.5 线性同余方程组
4.6 利用波拉德p方法分解整数
第5章 同余的应用
5.1 整除性检验
5.2 万年历
5.3 循环赛赛程
5.4 散列函数
5.5 校验位
第6章 特殊的同余式
6.1 威尔逊定理和费马小定理
6.2 伪素数
6.3 欧拉定理
第7章 乘性函数
7.1 欧拉φ函数
7.2 因子和与因子个数
7.3 完全数和梅森素数
7.4 莫比乌斯反演
第8章 密码学
8.1 字符密码
8.2 分组密码和流密码
8.3 取幂密码
8.4 公钥密码
8.5 背包密码
8.6 密码协议及应用
第9章 原根
9.1 整数的阶和原根
9.2 素数的原根
9.3 原根的存在性
9.4 指数的算术
9.5 用整数的阶和原根进行素性检验
9.6 通用指数
第10章 原根与整数的阶的应用
10.1 伪随机数
10.2 埃尔伽莫密码系统
10.3 电话线缆绞接中的一个应用
第11章 二次剩余
11.1 二次剩余与二次非剩余
11.2 二次互反律
11.3 雅可比符号
11.4 欧拉伪素数
11.5 零知识证明
第12章 十进制分数与连分数
12.1 十进制分数
12.2 有限连分数
12.3 无限连分数
12.4 循环连分数
12.5 用连分数进行因子分解
第13章 某些非线性丢番图方程
13.1 毕达哥拉斯三元组
13.2 费马大定理
13.3 平方和
13.4 佩尔方程
第14章 高斯整数
14.1 高斯整数和高斯素数
14.2 最大公因子和唯一因子分解
14.3 高斯整数与平方和
附录A 整数集公理
附录B 二项式系数
附录C Maple和Mathematica在数论中的应用
附录D 有关数论的网站
附录E 表格
参考文献
用英语介绍中国-这里是上海 本书特色 阅读可以提升人格情操,增长知识,提高语言文化的综合素质,其更本质、更核心的意义在于培养学习者的兴趣,而兴趣才是一切学习者的...
《把你的英语用起来!》内容简介:《 把你的英语用起来!》 ——透析法读原著,原地复活你放下多年的英语! 本书彻底解救一直想学英
社会统计学(21世纪统计学系列教材) 本书特色 尹海洁、李树林编著的《社会统计学》的特点为:以类别、序列和尺度三个测量层次的变量为维度安排教材内容;阐明每一种分...
★10年畅销200万套的日本科学手作第一品牌,继首轮火爆上市后,第二季新品重磅登场!★传统纸艺与现代光学令人惊叹的结合,重温童年折纸、点灯的乐趣!★外形精致,色...
语文名师王晓风精评:中国民间故事(统编语文教材配套阅读书系)(全本名著无障碍阅读) 内容简介 强调课标与素质阅读的结合,是本丛书明显的特征。各版本语文教材中所选...
几何三大难题困扰了人类2000多年,让许多伟大的数学家为之辛勤地思考并耗费大量的精力,人类也在解决他们的过程中发展了新的数学
离散数学及其应用-原书第6版 本书特色 本书是介绍离散学理论和方法的经典教材,已经成为采用率*高的离散数学教材,仅在美国就600多所高校用作教材,获得了极大的成...
点集拓扑 本书特色 点集拓扑是整个拓扑学以及现代分析学的基础,主要研究拓扑学的基本性质,如拓扑空间的紧致性、分离性、连通性等。全书共3章,第1章介绍拓扑空间与拓...
听读美国小故事(第1册) 本书特色 上海外语教育出版社引进出版的适合高中学生的《听读美国小故事》让读者徜徉在历史长河中,是中学生增进历史知识、提高文化修养的好伙...
原创经典作品 谁是真英雄 本书特色 善读精品美文,拾取久违的感动;体悟百味人生,感受成长的快乐。阅读其间,时而在惊险悬疑的案件中悚然而惊,时而为体察入微的真情潸...
格列佛游记-美绘馆-注音版 本书特色 一部奇书,不仅仅是单纯的少儿读物,而是饱寓讽刺和批判的文学杰作神奇的想象、极致的夸张,在对英国政体进行批判、对统治阶级的腐...
二年级/下册-神笔马良 内容简介 l 统编小学语文教科书必读书目l 配套统编小学语文教科书“快乐读书吧”栏目同步使用l 统编义务教育教科...
无师自通日本语口语 内容简介 本书所教授的语言是现代的标准日语,是有教养的日本人所实际使用的语言,并且各地的日本人,不论年龄、性别和职业,都能接受。此外,它还包...
预拌混凝土系列混凝土原材料 本书特色 内容简介:本书系统地介绍水泥及水、骨料、化学外加剂、矿物掺合材料及矿物外加剂、混凝土用纤维各种原材料的来源、特性与应用,并...
飞向太空港 本书特色 《飞向太空港》讲述了中国“长征三号”火箭首次在西昌发射场发射美国“亚洲一号”卫星的故事,记...
复活-(青少版) 本书特色 文学是比鸟飞得还远的梦想、比花开得还美的情感、比星闪得还亮的智慧,是我们到了一百岁还忘不掉的信念。文学名著永远是全世界人民的无价之宝...
朗文经典文学名著英汉双语读物-第八级(共5册)-适合高一.高二 本书特色 《朗文经典》(第八级)2800词汇量,适合高中一年级、高中二年级读者。本级共5册,分别...
《《内外伤辨惑论》评析》内容简介:本书为李杲代表作之一,也是一部其自序并生前定稿的著作,充分体现了其顾护脾胃、重在温补脾胃
西方教育十二讲西方教育十二讲前言 “对话中西”丛书与大家见面了。这套丛书共有10本书,在哲学、伦理、教育、法律、科技等五个领域进行中西文化的对话,所涉及的既有思...
让学生爱上课堂-名师高效课堂的引导艺术 本书特色 相信广大中小学一线教师在阅读《名师高效课堂的引导艺术》后,对自己的教学一定能起到意想不到的效果。如何让让性格各...