自从1908年出版以来,这本书已经成为一部经典之著。一代又一代崭露头角的数学家正是通过这本书的指引,步入了数学的殿堂。
在本书中,作者怀着对教育工作的无限热忱,以一种严格的纯粹学者的态度,揭示了微积分的基本思想、无穷级数的性质以及包括极限概念在内的其他题材。
CHAPTER I
REAL VARIABLES
SECT.
1-2. Rational numbers
3-7. Irrational numbers
8. Real numbers
9. Relations of magnitude between real numbers
10-11. Algebraical operations with real numbers
12. The number 2
13-14. Quadratic surds
15. The continum
16. The continuous real variable
17. Sections of the real numbers. Dedekind's theorem
18. Points of accumulation
19. Weierstrass's theorem .
Miscellaneous examples
CHAPTER II
FUNCTIONS OF REAL VARIABLES
20. The idea of a function
21. The graphical representation of functions. Coordinates
22. Polar coordinates
23. Polynomias
24-25. Rational functions
26-27. Aigebraical functious
28-29. Transcendental functions
30. Graphical solution of equations
31. Functions of two variables and their graphical repre-
sentation
32. Curves in a plane
33. Loci in space
Miscellaneous examples
CHAPTER III
COMPLEX NUMBERS
SECT.
34-38. Displacements
39-42. Complex numbers
43. The quadratic equation with real coefficients
44. Argand's diagram
45. De Moivre's theorem
46. Rational functions of a complex variable
47-49. Roots of complex numbers
Miscellaneous examples
CHAPTER IV
LIMITS OF FUNCTIONS OF A POSITIVE INTEGRAL VARIABLE
50. Functions of a positive integral variable
51. Interpolation
52. Finite and infinite classes
53-57. Properties possessed by a function of n for large values
of n
58-61. Definition of a limit and other definitions
62. Oscillating functions
63-68. General theorems concerning limits
69-70. Steadily increasing or decreasing functions
71. Alternative proof of Weierstrass's theorem
72. The limit of xn
73. The limit of(1+
74. Some algebraical lemmas
75. The limit of n(nX-1)
76-77. Infinite series
78. The infinite geometrical series
79. The representation of functions of a continuous real
variable by means of limits
80. The bounds of a bounded aggregate
81. The bounds of a bounded function
82. The limits of indetermination of a bounded function
83-84. The general principle of convergence
85-86. Limits of complex functions and series of complex terms
87-88. Applications to zn and the geometrical series
89. The symbols O, o,
Miscellaneous examples
CHAPTER V
LIMITS OF FUNCTIONS OF A CONTINUOUS VARIABLE. CONTINUOUS
AND DISCONTINUOUS FUNCTIONS
90-92. Limits as x-- or x---
93-97. Limits as z-, a
98. The symbols O, o,~: orders of smallness and greatness
99-100. Continuous functions of a real variable
101-105. Properties of continuous functions. Bounded functions.
The oscillation of a function in an interval
106-107. Sets of intervals on a line. The Heine-Borel theorem
108. Continuous functions of several variables
109-110. Implicit and inverse functions
Miscellaneous examples
CHAPTER VI
DERIVATIVES AND INTEGRALS
111-113. Derivatives
114. General rules for differentiation
115. Derivatives of complex functions
116. The notation of the differential calculus
117. Differentiation of polynomials
118. Differentiation of rational functions
119. Differentiation of algebraical functions
120. Differentiation of transcendental functions
121. Repeated differentiation
122. General theorems concerning derivatives, Rolle's
theorem
123-125. Maxima and minima
126-127. The mean value theorem
128. Cauchy's mean value theorem
SECT.
129. A theorem of Darboux
130-131. Integration. The logarithmic function
132. Integration of polynomials
133-134. Integration of rational functions
135-142. Integration of algebraical functions. Integration by
rationalisation. Integration by parts
143-147. Integration of transcendental functions
148. Areas of plane curves
149. Lengths of plane curves
Miscellaneous examples
CHAPTER VII
ADDITIONAL THEOREMS IN THE DIFFERENTIAL AND INTEGRAL CALCULUS
150-151. Taylor's theorem
152. Taylor's series
153. Applications of Taylor's theorem to maxima and
minima
154. The calculation of certain limits
155. The contact of plane curves
156-158. Differentiation of functions of several variables
159. The mean value theorem for functions of two variables
160. Differentials
161-162. Definite integrals
163. The circular functions
164. Calculation of the definite integral as the limit of a sum
165. General properties of the definite integral
166. Integration by parts and by substitution
167. Alternative proof of Taylor's theorem
168. Application to the binomial series
169. Approximate formulae for definite integrals. Simpson's
rule
170. Integrals of complex functions
Miscellaneous examples
CHAPTER VIII
THE CONVERGENCE OF INFINITE SERIES AND INFINITE INTEGRALS
SECT. PAGE
171-174. Series of positive terms. Cauchy's and d'Alembert's
tests of convergence
175. Ratio tests
176. Dirichlet's theorem
177. Multiplication of series of positive terms
178-180. Further tests for convergence. Abel's theorem. Mac-
laurin's integral test
181. The series n-s
182. Cauchy's condensation test
183. Further ratio tests
184-189. Infinite integrals
190. Series of positive and negative terms
191-192. Absolutely convergent series
193-194. Conditionally convergent series
195. Alternating series
196. Abel's and Dirichlet's tests of convergence
197. Series of complex terms
198-201. Power series
202. Multiplication of series
203. Absolutely and conditionally convergent infinite
integrals
Miscellaneous examples
CHAPTER IX
THE LOGARITHMIC, EXPONENTIAL, AND CIRCULAR FUNCTIONS
OF A REAL VARIABLE
204-205. The logarithmic function
206. The functional equation satisfied by log x
207-209. The behaviour of log x as x tends to infinity or to zero
210. The logarithmic scale of infinity
211. The number e
212-213. The exponential function
214. The general power ax
215. The exponential limit
216. The logarithmic limit
SECT.
217. Common logarithms
218. Logarithmic tests of convergence
219. The exponential series
220. The logarithmic series
221. The series for arc tan x
222. The binomial series
223. Alternative development of the theory
224-226. The analytical theory of the circular functions
Miscellaneous examples
CHAPTER X
THE GENERAL THEORY OF THE LOGARITHMIC, EXPONENTIAL,
AND CIRCULAR FUNCTIONS
227-228. Functions of a complex variable
229. Curvilinear integrals
230. Definition of the logarithmic function
231. The values of the logarithmic function
232-234. The exponential function
235-236. The general power a
237-240. The trigonometrical and hyperbolic functions
241. The connection between the logarithmic and inverse
trigonometrical functions
242. The exponential series
243. The series for cos z and sin z
244-245. The logarithmic series
246. The exponential limit
247. The binomial series
Miscellaneous examples
The functional equation satisfied by Log z, 454. The function e, 460.
Logarithms to any base, 461. The inverse cosine, sine, and tangent of a
complex number, 464. Trigonometrical series, 470, 472-474, 484, 485.
Roots of transcendental equations, 479, 480. Transformations, 480-483.
Stereographic projection, 482. Mercator's projection, 482. Level curves,
484-485. Definite integrals, 486.
APPENDIX I. The proof that every equation has a root
APPENDIX II. A note on double limit problems
APPENDIX III. The infinite in analysis and geometry
APPENDIX IV. The infinite in analysis and geometry
INDEX
中国文学史-第四卷-(第三版) 内容简介 本书运用历史唯物主义观点,以实事求是、守正出新为宗旨,深入描述了中国古代文学的发展历程,将中国文学置于广阔的中国文化背...
鲁滨逊漂流记(一步惊险刺激的荒岛求生信使) 本书特色 《鲁宾逊漂流记》是英国现实主义小说的开山之作,航海探险小说的先驱。小说的主人公鲁宾逊出生于一个中产阶级家庭...
三国演义-古典文学名著-无障碍阅读学生版 内容简介 在我国层见迭出的历史演义小说中,《三国演义》独称巨擘。它是我国古代*受欢迎的历史小说,也是我国长篇小说发展的...
华语地区最权威国学教材,80%台湾人读此书长大,台湾地区沿用40年的国学必修教材。国学大师任继愈先生鼎力推荐!周总理说:台湾国学比我们做的好。任继愈先生说:这种...
中学生英汉汉英词典 内容简介 《中学生英汉汉英词典》是以初、高中学为主要对象的小型英语工具书,同时适合自学语者及英语教师使用。本词典的一个鲜明特点集英汉、汉英于...
俄译汉教程(上下) 内容简介 本教材供高等院校俄语专业高年级翻译课使用,也可供翻译工作者参考。编写本教材的目的,是授予学生必要的翻译理论知识、方法和技巧,培养学...
2016年-全国硕士研究生招生考试中医综合考试大纲-高教版 本书特色 《2016年全国硕士研究生招生考试中医综合考试大纲》在2015年版的基础上作了不同程度的修...
中国画欣赏 本书特色 本书从观看者的角度去分析中国画的趣味及相关知识。具体包括:基本美术常识、审美概念、欣赏心理、画展现场感受及收藏等。旨在提高学习者在中国画方...
旧金山篇-没有我不知道的美国 本书特色 《没有我不知道的美国》系列丛书包含四个分册:《没有我不知道的美国华盛顿篇》《没有我不知道的美国旧金山篇》《没有我...
读经典:浮士德(精装版) 本书特色 《浮士德》是一部长达12111行的诗剧,*部共二十五场,不分幕。第二部共二十七场,分五幕。全剧没有首尾连贯的情节,而是以浮士...
伊索寓言-亲亲经典-01-中英双语对照 本书特色 《伊索寓言》是孩子们*早接触的童话之一。故事中的角色大都是像人一样能思考、说话和行动的动物,借以讽刺人间百态。...
中华上下五千年 本书特色中华上下五千年的历史,世事沧桑,朝代更替,其中涌现出许许多多 叱咤风云的历史人物,产生过许许多多的惊天动地的历史事件。多少英雄豪 杰,仁...
《全国硕士研究生入学考试用书:线性代数辅导讲义(2010版)》此次修订篇幅有所调整,除了补充、更换、编写了一些新题之外,针对同学
名家名作阅读全解.初中八年级 本书特色 在名篇中陶冶,在经典中感动,在鉴赏中积累,在练习中提高。名家名作阅读全解.初中八年级 内容简介 《名家名作阅读全解》(初...
2013注册会记师教材:经济法 本书特色 中国注册会计师协会组编的这本《经济法》以体现注册会计师考试改革总体目标为宗旨,以读者基本掌握大学会计等相关专业本科以上...
《数学名著译丛:普林斯顿数学指南(第1卷)》是由Fields奖得主T.Gowers主编、133位著名数学家共同参与撰写的大型文集,全书由288篇长篇论文和短篇条...
2018-肖秀荣考研政治命题人冲刺8套卷 本书特色 本书严格按照《2018年全国硕士研究生招生考试思想政治理论考试大纲》的要求编写,包括8套试卷、参考答案及详细...
与孤独为伍-英汉双语 本书特色 《与孤独为伍(英汉双语)》:企鹅口袋书系列·伟大的思想与孤独为伍-英汉双语 目录 一、与孤独为伍二、在朋友们中间:结语三、自由精...
中学生英语.COM(1)(英汉对照) 内容简介 本书包括:E——世界、语言链接、“e”点通、情感互动、短信EMS、休闲八爪鱼、聊天室等。中学生英语.COM(1)...
学生推荐阅读·世界经典文学名著(名师精读版):湘行散记 本书特色 《湘行散记》是沈从文众多散文作品中的精华。创作于沈从文离开湘西后重回故里之时,1934年,沈从...