作者:《Mathematics for Computer Science》书籍
出版社:University of Princeton
出版年:2010-9-8
评分:9.7
ISBN:9780821812211
所属分类:教辅教材
This course is offered to undergraduates and is an elementary discrete mathematics course oriented towards applications in computer science and engineering. Topics covered include: formal logic notation, induction, sets and relations, permutations and combinations, counting principles, and discrete probability.
I Proofs
1 Propositions 5
1.1 Compound Propositions 6
1.2 Propositional Logic in Computer Programs 10
1.3 Predicates and Quantifiers 11
1.4 Validity 19
1.5 Satisfiability 21
2 Patterns of Proof 23
2.1 The Axiomatic Method 23
2.2 Proof by Cases 26
2.3 Proving an Implication 27
2.4 Proving an “If and Only If” 30
2.5 Proof by Contradiction 32
2.6 Proofs about Sets 33
2.7 Good Proofs in Practice 40
3 Induction 43
3.1 The Well Ordering Principle 43
3.2 Ordinary Induction 46
3.3 Invariants 56
3.4 Strong Induction 64
3.5 Structural Induction 69
4 Number Theory 81
4.1 Divisibility 81
4.2 The Greatest Common Divisor 87
4.3 The Fundamental Theorem of Arithmetic 94
4.4 Alan Turing 96
4.5 Modular Arithmetic 100
4.6 Arithmetic with a Prime Modulus 103
4.7 Arithmetic with an Arbitrary Modulus 108
4.8 The RSA Algorithm 113
II Structures
5 Graph Theory 121
5.1 Definitions 121
5.2 Matching Problems 128
5.3 Coloring 143
5.4 Getting from A to B in a Graph 147
5.5 Connectivity 151
5.6 Around and Around We Go 156
5.7 Trees 162
5.8 Planar Graphs 170
6 Directed Graphs 189
6.1 Definitions 189
6.2 Tournament Graphs 192
6.3 Communication Networks 196
7 Relations and Partial Orders 213
7.1 Binary Relations 213
7.2 Relations and Cardinality 217
7.3 Relations on One Set 220
7.4 Equivalence Relations 222
7.5 Partial Orders 225
7.6 Posets and DAGs 226
7.7 Topological Sort 229
7.8 Parallel Task Scheduling 232
7.9 Dilworth’s Lemma 235
8 State Machines 237
III Counting
9 Sums and Asymptotics 243
9.1 The Value of an Annuity 244
9.2 Power Sums 250
9.3 Approximating Sums 252
9.4 Hanging Out Over the Edge 257
9.5 Double Trouble 269
9.6 Products 272
9.7 Asymptotic Notation 275
10 Recurrences 283
10.1 The Towers of Hanoi 284
10.2 Merge Sort 291
10.3 Linear Recurrences 294
10.4 Divide-and-Conquer Recurrences 302
10.5 A Feel for Recurrences 309
11 Cardinality Rules 313
11.1 Counting One Thing by Counting Another 313
11.2 Counting Sequences 314
11.3 The Generalized Product Rule 317
11.4 The Division Rule 321
11.5 Counting Subsets 324
11.6 Sequences with Repetitions 326
11.7 Counting Practice: Poker Hands 329
11.8 Inclusion-Exclusion 334
11.9 Combinatorial Proofs 339
11.10 The Pigeonhole Principle 342
11.11 A Magic Trick 346
12 Generating Functions 355
12.1 Definitions and Examples 355
12.2 Operations on Generating Functions 356
12.3 Evaluating Sums 361
12.4 Extracting Coefficients 363
12.5 Solving Linear Recurrences 370
12.6 Counting with Generating Functions 374
13 Infinite Sets 379
13.1 Injections, Surjections, and Bijections 379
13.2 Countable Sets 381
13.3 Power Sets Are Strictly Bigger 384
13.4 Infinities in Computer Science 386
IV Probability
14 Events and Probability Spaces 391
14.1 Let’s Make a Deal 391
14.2 The Four Step Method 392
14.3 Strange Dice 402
14.4 Set Theory and Probability 411
14.5 Infinite Probability Spaces 413
15 Conditional Probability 417
15.1 Definition 417
15.2 Using the Four-Step Method to Determine Conditional Probability 418
15.3 A Posteriori Probabilities 424
15.4 Conditional Identities 427
16 Independence 431
16.1 Definitions 431
16.2 Independence Is an Assumption 432
16.3 Mutual Independence 433
16.4 Pairwise Independence 435
16.5 The Birthday Paradox 438
17 Random Variables and Distributions 445
17.1 Definitions and Examples 445
17.2 Distribution Functions 450
17.3 Bernoulli Distributions 452
17.4 Uniform Distributions 453
17.5 Binomial Distributions 456
18 Expectation 467
18.1 Definitions and Examples 467
18.2 Expected Returns in Gambling Games 477
18.3 Expectations of Sums 483
18.4 Expectations of Products 490
18.5 Expectations of Quotients 492
19 Deviations 497
19.1 Variance 497
19.2 Markov’s Theorem 507
19.3 Chebyshev’s Theorem 513
19.4 Bounds for Sums of Random Variables 516
19.5 Mutually Independent Events 523
20 Random Walks 533
20.1 Unbiased Random Walks 533
20.2 Gambler’s Ruin 542
20.3 Walking in Circles 549
高等数学辅导 同济.第七版 本书特色 一、本章教材全解:先对每节所涉及的考研大纲进行解读,然后对本节涉及的基本概念、基本定理进行系统梳理,指出基本概念的理解和定...
三个火枪手 本书特色 显著特点是 :开门见山、情节生动、对话有趣,而且每段都留下一个悬念,以引起读者欲罢不能的阅读兴趣。同时文字相当讲究,华丽而不艰涩,风趣而不...
吹埙奏雅录--姚小鸥自选集 本书特色 礼乐文化是中国的主流文化,每一个中国人都自觉不自觉地浸润在这历史的长河中。作者将有关礼乐文化的学术思想贯穿于古代文史研究的...
日语睿读:中日对照:文学篇 本书特色 《日语睿读:文学篇(中日对照)》以趣味阅读为编写宗旨,精选日本近现代文学作品长、短篇佳作共25篇,每篇文章由作品正文、语句...
会计英语 本书特色 全书共10个单元,以企业财会活动为主线,深入浅出地介绍会计英语的制单、记账、核算、会计业务、财务管理及财务审计等知识技能;并以实际工作需要为...
Alice’s Adventures in Wonderland 内容简介 Alice lives an ordinary life, until the da...
水浒传-小学必读世界名著-第一辑 本书特色 施耐庵原著的《水浒传》是一部经过宋元两代数百年的酝酿、积累而*终完成的长篇历史小说。它不是通俗化的历史教科书,而是一...
哈克贝利.费恩历险记 本书特色 《哈克贝利·费恩历险记》是幽默大师马克·吐温的代表作。小说以儿童哈克贝利的口吻,讲述他与种植园黑奴吉姆沿密西西比河漂流的冒险故事...
伊索寓言-世界经典文学名著-全译本 本书特色 ☆专门为中小学生读者精挑细选的世界经典名篇和中国经典名家名篇,囊括中国文学史上灿若明星的各位大师杰作。☆ 体裁...
奔向月球(外研社·DK英汉对照百科读物)(初级B) 本书特色 本套丛书是一套独一元二的丛书,帮助你树立阅读英文的信心。纪实题材激发你的求知欲,让你欲罢不能,循序...
数学百科全书第四卷 内容简介 本书由三类条目组成。首先是介绍数学的各个主要方向的综述性条目(采用了一种很好的分科办法),对这类条目的基本要求是尽可能通俗全面地阐...
《语文杂记》针对许多常见的问题,以随笔形式做了深入浅出的讲解。中国古代有讲究用典的传统,但现代人对于这些典故常常是只知其
供应链管理 本书特色 《供应链管理/高职高专物流管理类“十二五”规划教材》研究了供应链管理产生及发展的历程,全面系统分析了供应链管理的战略思想,具体阐述了供应链...
《产品心经:产品经理应该知道的72件事》内容简介:这是一部从思维、方法、工具、原则等多个维度总结产品经理最佳实践(工作秘诀)
《客厅全维度解析2000例(第2季):客厅电视墙》内容简介:客厅作为家居生活的公共区域,使用十分频繁,是全家人聚集及接待宾客的综
Thethirdeditionofthishighlysuccessfultextbookhasbeencarefullyrevisedandupdated,a...
一部故事化的数学简史,古根海姆奖得主,最受欢迎的科普读物,连续六十周荣登《纽约时报》科普畅销书榜。充满洞见、极富启发、富
站在大学讲台上-第七届北京青年教师教学基本功比赛(高校)实录及最佳教案汇编 本书特色 张青山、史利国主编的《站在大学讲台上:第七届北京青年教师教学基本功比赛(高...
精彩数学就在身边 内容简介 《精彩数学就在身边》是融知识性,趣味性和参与性于一体的通识读物,适合初、高中学生及中职学生阅读。本书将数学知识融入游戏,生活常识之中...
韩国延世大学经典教材系列:延世韩国语1 本书特色 本套书由韩国延世大学韩国语学堂知名教授在《韩国语教程(1-6)》的基础上重新改编而成,内容更新鲜时尚,贴近生活...