Solutions to partial differential equations or systems often, over specific time periods, exhibit smooth behaviour. Given sufficient time, however, they almost invariably undergo a brutal change in behaviour, and this phenomenon has become known as "blowup". In this book, the author provides an overview of what is known about this situation and discusses many of the open problems concerning it. The book deals with classical solutions of global problems for hyperbolic equations or systems. The approach is based on the display and study of two local blowup mechanisms, which the author calls the "ordinary differential equation mechanism" and the "geometric blowup mechanism". It introduces, via energy methods, the concept of lifespan, related to the nonlinear propagation of regularity (from the past to the future). It addresses specifically the question of whether or not there will be blowup in a solution, and it classifies those methods used to give positive answers to the question. The material corresponds to a one semester course for students or researchers with a basic elementary knowledge of partial differential equations, especially of hyperbolic type including such topics as the Cauchy problem, wave operators, energy inequalities, finite speed of propagation, and symmetric systems. It contains a complete bibliography reflecting the high degree of activity among mathematicians interested in the problem.
CHAPTER I. The Two Basic Blowup Mechanisms
Introduction
A. The ODE mechanism
B. The geometric blowup mechanism
C. Combinations of the two mechanisms
Notes
CHAPTER II. First Concepts on Global Cauchy Problems
Introduction
1. Short time existence
2. Lifespan and blowup criterion
3. Blowup or not? Functional methods
4. Blowup or not? Comparison and averaging methods
Notes
CHAPTER III. Semilinear Wave Equations
Introduction
1. Semilinear blowup criteria
2. Maximal influence domain
3. Maximal influence domains for weak solutions
4. Blowup rates at the boundary of the maximal influence domain
5. An example of a sharp estimate of the lifespan
Notes
CHAPTER IV. Quasilinear Systems in One Space Dimension
Introduction
1. The scalar case
2. Riemann invariants, simple waves, and L1-boundedness
3. The case of 2 x 2 systems
4. General systems with small data
5. Rotationally invariant wave equations
Notes
CHAPTER V. Nonlinear Geometrical Optics and Applications
Introduction
1. Quasilinear systems in one space dimension
2. Quasilinear wave equations
3. Further results on the wave equation
BIBLIOGRAPHY
INDEX
Notes
精彩摘录纯意识即纯潜能,这是一个具有无穷可能性和无限创造性的场。纯意识是我们的精神实质。由于它无边无际,无穷无尽,所以又
钢中夹杂物与钢的性能及断裂 本书特色 李静媛等编著的《钢中夹杂物与钢的性能及断裂》分上下两篇。上篇讲述夹杂物与钢的性能,主要介绍在只有夹杂物一种变量的情况下,测...
RevolutionaryMedicineisarichlytexturedexaminationofthewaysthatCubaspublichealthc...
疼痛妙方绝技精粹续集 内容简介 《疼痛妙方绝技精粹》一书出版后,受到广大读者的支持和欢迎,纷纷打来电话以示鼓励,并提蹬宝贵意见,以及在应用本书妙方治愈疾病...
刘勤字彦序,成都人。四川大学文学博士、中国社会科学院访问学者、四川师范大学251重点人才培养工程科研人员、副教授、中国民间文学大系编纂工程副主编。主要从事先秦文...
蒋子丹以写作荒诞小说作为自己创作目标,这种荒诞小说要求所有细节都是真实可信,没有一句话让人费解,但骨子里横着一个荒诞的内核,这个内核里又包裹着某种险恶的真实。本...
展示照明设计 本书特色 展示设计和照明设计是当前两个正在蓬勃发展的行业,现代照明设计不仅注重在“数量”层面上满足照亮环境的需要,更注重在“质量”层面上创...
"AnarchyBell"isaheartwrenchingstoryaboutfeelinghelplessandangrywhilelivinginatim...
采油井、注入井生产问题百例分析 本书特色 本书以案例形式对采油井、注入井现场采取的增产、增注措施,出现的生产问题进行了全面地分析、诊断。一个实例反映出一个生产中...
作品目录第1章学习速写之初1.1我的学画简介1.2我的速写本1.3为什么要写本书1.4年轻的动画师为什么要进行速写训练1.5这也是你的速
亚历山大·荣格,医学博士,曾任美国关爱有我整体保健中心(We Care Holistic Health Center)医学主管,目前执业于美国著名的双十一健康中...
高炉布料规律(第3版) 内容简介 本书*初于1984年出版,本次是第3版。书中重点讨论无钟布料操作和大钟布科操作,系统讲解布料操作如何影响高炉治炼进程。掌握和运...
上田義彦,1957年兵庫県生まれ、写真家、多摩美術大学教授。東京ADC賞最高賞、ニューヨークADC賞、カンヌ国際広告祭グラフィック部門銀賞、朝日広告賞、日本写真...
列奥·施特劳斯是20世纪最具争议性也最神秘的哲学家之一。他被视为新保守主义的思想鼻祖,具有塑形布什政府外交政策的强大力量。真相果真如此?一种普遍的观念认为,施特...
李虎,OPEN建筑事务所创始合伙人,曾任Studio-X哥伦比亚大学北京建筑中心负责人,美国Steven Holl Architects(斯蒂文·霍尔建筑事务所...
生态文明论 内容简介 本书内容包括:迎接生态文明的新世纪、生态意识文明、生态行为文明、生态制度文明、生态产业文明、生态环境建设与中国的环境保护等。生态文明论 目...
宫泽贤治,是日本家喻户晓、妇孺皆知的诗人与儿童文学巨匠。全国各地的小学、国中的国语课本都可见他的作品,高中国文教材则可见他的诗歌,日本不论哪一个阶层哪一个年代的...
【编辑推荐】◆ 史上最伟大的科幻小说之一。——《时代》周刊◆ 人类反复遭受苦难,是因为反复忘记苦难。◆ 一切废土题材的起源:启发《辐射》游戏、《海伯利安》小说。...
Thisbookoffersavarietyoftypicaldishesfromdifferentpartsoftheworld.Manyofthesedis...
胡鴻,1986年生,安徽岳西人。2012年畢業於北京大學歷史學系,獲歷史學博士學位。現任武漢大學歷史學院暨中國三至九世紀研究所副教授。研究領域為魏晉南北朝史和中...