Solutions to partial differential equations or systems often, over specific time periods, exhibit smooth behaviour. Given sufficient time, however, they almost invariably undergo a brutal change in behaviour, and this phenomenon has become known as "blowup". In this book, the author provides an overview of what is known about this situation and discusses many of the open problems concerning it. The book deals with classical solutions of global problems for hyperbolic equations or systems. The approach is based on the display and study of two local blowup mechanisms, which the author calls the "ordinary differential equation mechanism" and the "geometric blowup mechanism". It introduces, via energy methods, the concept of lifespan, related to the nonlinear propagation of regularity (from the past to the future). It addresses specifically the question of whether or not there will be blowup in a solution, and it classifies those methods used to give positive answers to the question. The material corresponds to a one semester course for students or researchers with a basic elementary knowledge of partial differential equations, especially of hyperbolic type including such topics as the Cauchy problem, wave operators, energy inequalities, finite speed of propagation, and symmetric systems. It contains a complete bibliography reflecting the high degree of activity among mathematicians interested in the problem.
CHAPTER I. The Two Basic Blowup Mechanisms
Introduction
A. The ODE mechanism
B. The geometric blowup mechanism
C. Combinations of the two mechanisms
Notes
CHAPTER II. First Concepts on Global Cauchy Problems
Introduction
1. Short time existence
2. Lifespan and blowup criterion
3. Blowup or not? Functional methods
4. Blowup or not? Comparison and averaging methods
Notes
CHAPTER III. Semilinear Wave Equations
Introduction
1. Semilinear blowup criteria
2. Maximal influence domain
3. Maximal influence domains for weak solutions
4. Blowup rates at the boundary of the maximal influence domain
5. An example of a sharp estimate of the lifespan
Notes
CHAPTER IV. Quasilinear Systems in One Space Dimension
Introduction
1. The scalar case
2. Riemann invariants, simple waves, and L1-boundedness
3. The case of 2 x 2 systems
4. General systems with small data
5. Rotationally invariant wave equations
Notes
CHAPTER V. Nonlinear Geometrical Optics and Applications
Introduction
1. Quasilinear systems in one space dimension
2. Quasilinear wave equations
3. Further results on the wave equation
BIBLIOGRAPHY
INDEX
Notes
This volume, with more than 400 reproductions, will be the most comprehensive pu...
产科病效方443首 内容简介 本书提供了治疗产科常见病、多发病的临床效方443首。书中对异常妊娠、妊娠合并症、异常分娩、异常产褥以及其他产科疾病的治疗方(法)作...
阅读秩序 内容简介 《第三代学人自选集(第1辑):阅读秩序》的主要风容包括:秩序的阅读、阅读中国市场经济中的秩序、罪犯、犯罪嫌疑人和政治正确、法治三题、制度是如...
深泽直人,IDEO 最早期设计师,无印良品灵魂人物,现武藏野和多摩美术大学客座教授,也是三宅一生基金会创建的 21_21 DESIGN SIGHT 总监;家用电...
只要找回自己的聲音、尊重自己所是,並以神聖陰性為本質的自傲之姿……我們一定能夠破除所有障礙,開創新局。———本書作者寫於30週年版前言———本書的寫作與神話學大...
精彩摘录唇齿一扪,就能感知每一座山,却放掉了当季的山色山岚,放掉了今日的沾露茶香,真有一种说不出的遗憾。——引自章节:品
今日她发甄座聪阴沉、贪婪、自私,而且像妇般,不懂得在适当时候退出,她怕他心有不甘,会伤害她,这些都叫她恐惧。在紧急情况下,她突然看清自己的真面目,又更加惶恐。之...
民事审判指导与参考(2000年第3卷 总第3卷) 本书特色 发布近年来**人民法院为贯彻执行党和国家的政策,而制定的民事审判指导意见。选登国家立法机关**制定的...
外科症治全生集 内容简介 内容提要本书系清·王洪绪所撰。全书共四卷,为外科专著,包括痈疽疮毒总论、临证医案、诸药制法及外科方剂。其中所载阳和汤、犀黄丸、阳和解凝...
《新型冠状病毒感染防护读本》内容简介:本书参考大量国内外最新资料,以问答的形式,详细介绍新型冠状病毒的基础知识、新型冠状病
超豪华阵容的剪辑实战精品大师班来自包揽无数奥斯卡、艾美奖等行业殊荣,拥有逾1000个A类影视项目经验的近60位世界各地剪辑师比如,与诺兰、卡梅隆、维伦纽瓦、昆汀...
郭敬明,青春文学领军人物,畅销作家,上海最世文化发展有限公司董事长;长江文艺出版社北京图书中心副总编辑;“中国青春文学第一刊”《最小说》主编。落落,校园女王,畅...
亦舒,原名倪亦舒,1946年生于上海,祖籍浙江镇海,五岁时定居香港。她曾做过记者和编辑,后进入政府新闻处担任新闻官,也当过电视台编剧。现为专业作家,移居加拿大。...
学生里传:“铁打的程砚宁,流水的第二名。”关于他的神话,始于安城一中。众人眼中的程砚宁:模范、招牌、标杆……他是优等生中的楷模,同龄人里的领袖,全国卷高考739...
铁路旅客运输服务(第二版) 本书特色 《铁路旅客运输服务(第2版)》是在2006年出版的普通高等教育“十一五”国家级规划教材《铁路旅客运输服务》的基础上修订而成...
邢广程,男,1961年10月生,黑龙江省绥棱县泥尔河乡人。中国社会科学院中国边疆研究所(原称“中国社会科学院中国边疆史地研究中
张乐平,浙江海盐人,毕生从事漫画创作,画笔生涯达60个春秋。他所创作的三毛形象,妇孺皆知,名播海外,被誉为“三毛之父”。三毛之父张乐平,是中国当代最杰出的漫画家...
法律帝国 本书特色 《法律帝国》是一部发人深思、肌理丰富的重要法哲学*作,其鲜活灵动、雄浑高*的行文风格,一如罗纳德·德沃金的读者所期待。它展现了一个法律观念,...
张占斌 主编中共中央党校(国家行政学院)马克思主义学院院长,一级教授、博士生导师。中国公共经济研究会常务副会长,国家社会科学基金经济学评审组专家,入选国家“四个...
全民阅读文库-中国传统医学偏方大全(全六卷16开) 本书特色 为了满足人们用简、廉、便、验的中药防病治病、养生保健的需要,笔者根据长期临床工作的经验,将多年来从...