Solutions to partial differential equations or systems often, over specific time periods, exhibit smooth behaviour. Given sufficient time, however, they almost invariably undergo a brutal change in behaviour, and this phenomenon has become known as "blowup". In this book, the author provides an overview of what is known about this situation and discusses many of the open problems concerning it. The book deals with classical solutions of global problems for hyperbolic equations or systems. The approach is based on the display and study of two local blowup mechanisms, which the author calls the "ordinary differential equation mechanism" and the "geometric blowup mechanism". It introduces, via energy methods, the concept of lifespan, related to the nonlinear propagation of regularity (from the past to the future). It addresses specifically the question of whether or not there will be blowup in a solution, and it classifies those methods used to give positive answers to the question. The material corresponds to a one semester course for students or researchers with a basic elementary knowledge of partial differential equations, especially of hyperbolic type including such topics as the Cauchy problem, wave operators, energy inequalities, finite speed of propagation, and symmetric systems. It contains a complete bibliography reflecting the high degree of activity among mathematicians interested in the problem.
CHAPTER I. The Two Basic Blowup Mechanisms
Introduction
A. The ODE mechanism
B. The geometric blowup mechanism
C. Combinations of the two mechanisms
Notes
CHAPTER II. First Concepts on Global Cauchy Problems
Introduction
1. Short time existence
2. Lifespan and blowup criterion
3. Blowup or not? Functional methods
4. Blowup or not? Comparison and averaging methods
Notes
CHAPTER III. Semilinear Wave Equations
Introduction
1. Semilinear blowup criteria
2. Maximal influence domain
3. Maximal influence domains for weak solutions
4. Blowup rates at the boundary of the maximal influence domain
5. An example of a sharp estimate of the lifespan
Notes
CHAPTER IV. Quasilinear Systems in One Space Dimension
Introduction
1. The scalar case
2. Riemann invariants, simple waves, and L1-boundedness
3. The case of 2 x 2 systems
4. General systems with small data
5. Rotationally invariant wave equations
Notes
CHAPTER V. Nonlinear Geometrical Optics and Applications
Introduction
1. Quasilinear systems in one space dimension
2. Quasilinear wave equations
3. Further results on the wave equation
BIBLIOGRAPHY
INDEX
Notes
鲁迅(1881-1936),原名周树人,字豫才,浙江绍兴会稽县人,中国现代文学的开山巨匠、思想家和革命家。鲁迅以笔代戈,奋笔疾书,战斗一生,被誉为“民族魂”。“...
【编辑推荐】❄ 两位随时准备出逃的女性,一次重建自我的疗愈之旅。“我(埃米)是一名女作家,也是沉默的家暴受害者。她(乔伊)是一名卡车司机,在美国最危险的公路上跑...
1931年6月13日生於美國華盛頓特區。父母是俄羅斯人,第一次大戰後移民美國。亞隆是美國當代精神醫學大師級人物,也是造詣最深的心理治療思想家。早年師承新佛洛伊德...
Thisbookprovidesthetechnicalessentials,state-of-the-artknowledge,businessecosyst...
《慧灯·问道》编辑部成立于2016年,专门从事策划、制作文化交流类节目。为了弘扬传统文化,使传统文化的智慧更好地服务于社会,编辑部策划并制作了《慧灯·问道》系列...
锦方选集内科第一册 本书特色 重庆卫生局编写的《锦方选集:内科(第1册)》收入了上千个治疗咳嗽类、哮喘类、肺痈类、肺痨类、咳血类、吐血类、便血类、溺血类等内科病...
牛德兴临床心得集 本书特色 本书系编者行医50余年的临床经验总结,共分三篇。上篇总结编者对脾胃病、中风病、乳腺病等的临床经验;中篇为医论、医案、医话,附有牛氏简...
★超大型新人丸戶史明×超人氣插畫家深崎暮人,聯手打造女主角養成喜劇。★好評不斷,人氣急速攀升,第一女主角培育喜劇第二集登場!!★於日本出版第一集時,便引發「販售...
全球政治圈、财经圈金字塔尖人物都在运用的成功秘密:气场!在过去的整整三千年,这个秘密只在中国、印度、埃及、巴比伦等少数国家悄悄流行。直到后来,它流行到美、加、英...
叶茂中叶茂中营销策划机构董事长,营销策划人和品牌管理专家,清华大学特聘教授,南京理工大学工商管理硕士(MBA)研究生导师,中央电视台广告策略顾问,著有《广告人手...
束景南,浙江大学古籍所教授、博导。专攻儒家文化,早年研究朱子学,出版有《朱子大传》《朱熹年谱长编》《朱熹佚诗佚文全考》等著作,《朱子大传》获得第七届中国图书奖、...
●人气漫画家青庭创作的《零分偶像》,是快看漫画TOP10作品,在网络上连载拥有超高人气,收获4820000人次关注20490000次点赞1100
刘琦炼铁论文集 内容简介 从我1954年担任高炉工长算起,半个多世纪过去了。除了一段时间从事冶金系统企业管理、体制改革和钢铁内外贸易以及有色金属的科研工作以外,...
本書是一向以兩性關係和行銷企劃見長的吳若權,首度以人生課題來做不同角度和樣貌的切入,並與讀者進行了更誠摯、深刻的溝通。面
the art of architecture: between poetry and sciencejunya ishigami‘s work process...
一部融合科普性与趣味性、兼具心理学与哲学意味的医学散文。一位满怀仁心的资深医者对几十年行医生涯的回望与省思。感冒发烧、上呼吸道感染、先天性心脏病、阿尔茨海默病、...
勒.柯布西耶全集(第1卷.1910-1929年) 内容简介 《勒·柯布西耶全集--第1卷·1910~1929年 》共8卷,约400万字,由瑞士Birkhause...
中国城市温室气体排放(2015年) 内容简介 本书是在《中国城市温室气体排放数据集 (2015) 》的基础上撰写的一本针对该数据的解读材料, 以科学、形象、生动...
◆美国国家犹太图书奖获奖作品◆书写一代匈牙利知识分子的命运与时代···【内容简介】匈牙利作家哲尔吉·康拉德几乎见证了20世纪东欧每一个重要的历史时刻:1933年...
√ 一本书了解关于导航的前世今生√ 全球最具影响力的科技记者最新力作√ 揭秘GPS是如何影响和监视我们生活***************************...