Solutions to partial differential equations or systems often, over specific time periods, exhibit smooth behaviour. Given sufficient time, however, they almost invariably undergo a brutal change in behaviour, and this phenomenon has become known as "blowup". In this book, the author provides an overview of what is known about this situation and discusses many of the open problems concerning it. The book deals with classical solutions of global problems for hyperbolic equations or systems. The approach is based on the display and study of two local blowup mechanisms, which the author calls the "ordinary differential equation mechanism" and the "geometric blowup mechanism". It introduces, via energy methods, the concept of lifespan, related to the nonlinear propagation of regularity (from the past to the future). It addresses specifically the question of whether or not there will be blowup in a solution, and it classifies those methods used to give positive answers to the question. The material corresponds to a one semester course for students or researchers with a basic elementary knowledge of partial differential equations, especially of hyperbolic type including such topics as the Cauchy problem, wave operators, energy inequalities, finite speed of propagation, and symmetric systems. It contains a complete bibliography reflecting the high degree of activity among mathematicians interested in the problem.
CHAPTER I. The Two Basic Blowup Mechanisms
Introduction
A. The ODE mechanism
B. The geometric blowup mechanism
C. Combinations of the two mechanisms
Notes
CHAPTER II. First Concepts on Global Cauchy Problems
Introduction
1. Short time existence
2. Lifespan and blowup criterion
3. Blowup or not? Functional methods
4. Blowup or not? Comparison and averaging methods
Notes
CHAPTER III. Semilinear Wave Equations
Introduction
1. Semilinear blowup criteria
2. Maximal influence domain
3. Maximal influence domains for weak solutions
4. Blowup rates at the boundary of the maximal influence domain
5. An example of a sharp estimate of the lifespan
Notes
CHAPTER IV. Quasilinear Systems in One Space Dimension
Introduction
1. The scalar case
2. Riemann invariants, simple waves, and L1-boundedness
3. The case of 2 x 2 systems
4. General systems with small data
5. Rotationally invariant wave equations
Notes
CHAPTER V. Nonlinear Geometrical Optics and Applications
Introduction
1. Quasilinear systems in one space dimension
2. Quasilinear wave equations
3. Further results on the wave equation
BIBLIOGRAPHY
INDEX
Notes
TheFourthEditionofthishighlysuccessfultextbookprovidesauniqueandcomprehensiveint...
一隻女性的右手腕被發現在公園的垃圾箱裡,那是兇手嚐過「獵殺人們」的快感後,所發出的挑戰宣言……一輛燃燒墜落谷底的汽車。從死於車禍的男人房間起出無數的「殺人記錄」...
作品目录“新经典文库”序铁凝小说的叙事理??铁凝:快乐地游走在“集体写作”之外写在卷首玫瑰门铁凝主要作品铁凝创作年表铁凝评
Ionceheardamelody,stillandcascading,inthewarmhoursofasummerday.Istartedtoformula...
From the internationally bestselling author of The Bone Season, an enthralling e...
毕业于东京农业大学短期大学,曾担任医院营养师,之后成为独立料理研究家,制作的简单且营养均衡的料理十分受欢迎。著有《30分钟3道菜!210种预处理低糖小菜》《一起...
钢铁工业废水资源回用技术与应用 本书特色 本书重点介绍了钢铁工业生产工艺中投入产出的物料平衡及其废水来源、分类与污染特征;论述了钢铁工业废水资源回用技术对策与发...
伟大的安妮,新浪微博人气漫画作者,大学在读生。出版作品有《妮玛,这就是大学》,《妮玛和王小明》。《妮玛和王小明》获得第十届金龙奖幽默漫画奖。
脑功能成像及在人文社会科学中的应用 本书特色 人脑由自然界中*复杂的物质构成,脑功能是自然界中*复杂的运动形式。脑的研究具有重大的科学意义和深远的哲学意义,揭示...
JavaScript语言有很多复杂的概念,但却用简单的方式体现出来(比如回调函数),因此,JavaScript开发者无需理解语言内部的原理,就能编写出功能全面的...
An introduction to computational thinking that traces a genealogy beginning cent...
Q桑(Q-rais)日本漫画家、动画导演。1985年生于栃木县,高中开始自学制作动画短片,毕业于东京造形大学设计系动画专业。2009年至2017年就职于东北新社...
李望水:作者、编剧。江湖人称水哥,A型血腹黑大摩羯。《飞言情》《微故事》等知名畅销期刊常驻作者。图书已出版《逆兽之韧》《有你的世界》《梦碎长乐街》。乔幸运:永远...
博报堂是日本历史最悠久的广告公司。自1895年在日本创立以来,已经成为现今日本第2大,世界第9大的知名广告公司。嘎纳国际广告节上获两次以上大奖的广告公司全世界只...
体育.医疗.福利-建筑设计资料集-第6分册-(第三版) 本书特色 《建筑设计资料集》是建设领域的**工具书,被誉为行业“天书”;《建筑设...
胡适(适之,1891-1962)是廿世纪中国最重要的知识分子,在思想文化和学术教育领域都有开创性的贡献,也始终坚持宏扬自由民主的理想而不辍,影响深远。历任北大文...
大多数中国人没有经过深入思索和论证,自小接受无神论。在作者所在的西方,广义的基督教世界,几个世纪以来,几乎所有人理所当然地信仰上帝。可以戏仿苏格拉底的名言说,“...
《PhotoshopCS5图像处理案例实训教程》共分12章。其中,前10章主要介绍PhotoshopCS5的基础知识和基本操作,使读者初步掌握使用计
独特疗法调治鼻炎咽炎 本书特色 《独特疗法调治鼻炎咽炎》:祖国医学经几千年来历代医家的积累、提炼、传承、发展,为中华民族的繁衍昌盛作出了巨大贡献。临床实践过程中...
考琳·麦卡洛(1937—)出生于澳大利亚,自童年起便酷爱阅读,对文学和历史兴趣浓厚。因理科成绩优异,她选择医学作为自己的职业。曾先后在澳大利亚、英国和美国从事神...