简明微积分

简明微积分

作者:龚昇

出版社:高等教育出版社

出版年:2006-4

评分:9.2

ISBN:9787040186932

所属分类:教辅教材

书刊介绍

内容简介

《简明微积分》自1978年第一版问世以来,一直在中国科学技术大学作为教本,得到非常高的评价。本书是在第三版的基础上,根据作者近年来的教学经验及教学信息反馈修订而成。作者将一些章节进行了修改和补充,扩大了应用实例的范围,突出了数学思想的理解,便于读者更好地深入了解和掌握课程内容。

本书将微分与积分、连续与离散、有限与无限等视为矛盾,在强调严格应用数学语言的同时,形象地介绍了它们之间的联系与区别。全书以Newton-Leibniz关于微积分的基本定理及其高维情形的相应Stokes定理为核心贯串始终,观点新颖而深入,在众多微积分教材中可谓独树一帜。

本书在内容安排上较其他通用教材有所区别,共分十一章:微积分的概念,微积分的运算,微积分的一些应用,常微分方程,矢量代数与空间解析几何,重积分与偏微商,线、面积分与外微分形式,多变量微积分的一些应用,ε-δ语言,无穷级数与无穷积分,Fourier级数与Fourier积分。

本书集作者多年极为丰富的教学和科研经验之大成,将经过广泛教学实践检验的成果精心编纂,对广大微积分教学工作者具有很高的参考价值,可供高等学校理工类专业学生选用或参考,也可供有关人员学习参考。

作品目录

第一章 微积分的概念
1.1 函数与极限
1.1.1 数列极限与函数极限
1.1.2 连续函数
1.2 定积分
1.2.1 计算面积
1.2.2 定积分的定义
1.2.3 对数函数y=1nx
1.3 微商与微分
1.3.1 曲线的切线
1.3.2 速度.密度
1.3.3 微商的定义
1.3.4 微分
1.3.5 微分中值定理
1.4 微积分基本定理
第二章 微积分的运算
2.1 微分法
2.1.1 微商与微分的计算
2.1.2 高阶微商与高阶微分
2.1.3 利用微分作近似计算
2.2 积分法
2.2.1 不定积分的计算
2.2.2 定积分的计算
2.2.3 定积分的近似计算
第三章 微积分的一些应用
3.1 面积.体积.弧长
3.1.1 面积
3.1.2 体积
3.1.3 弧长
3.2 曲线的描绘
3.2.1 函数图形的上升和下降
3.2.2 函数图形的凹与凸
3.2.3 曲线的渐近线
3.2.4 描绘图形的例子
3.2.5 曲率
3.3 Taylor(泰勒)展开与极值问题
3.3.1 Taylor(泰勒)展开式
3.3.2 极值问题
3.4 物理应用举例
第四章 常微分方程
4.1 一阶微分方程
4.1.1 概念
4.1.2 分离变量
4.1.3 线性方程
4.2 二阶微分方程
4.2.1 可降阶的方程
4.2.2 二阶线性方程
4.2.3 常系数线性方程
4.2.4 质点振动
4.2.5 n阶线性微分方程与常微分方程组
第五章 矢量代数与空间解析几何
5.1 空间直角坐标系与矢量
5.1.1 直角坐标系
5.1.2 矢量的加法与数乘
5.2 矢量的乘积
5.2.1 矢量的内积
5.2.2 矢量的外积
5.2.3 矢量的混合积
5.3 平面与直线
5.3.1 平面方程
5.3.2 直线方程
5.4 二次曲面
5.4.1 柱面
5.4.2 旋转曲面
5.4.3 锥面
5.4.4 椭球面
5.4.5 双曲抛物面
5.4.6 单叶双曲面
5.4.7 双叶双曲面
5.4.8 椭圆抛物面
5.5 坐标变换
5.5.1 坐标系的平移
5.5.2 坐标系的旋转
第六章 重积分与偏微商
6.1 重积分
6.1.1 多变量函数的极限与连续性
6.1.2 重积分的概念
6.1.3 重积分的计算
6.2 偏微商
6.2.1 偏微商与全微分
6.2.2 隐函数的微商
6.3 Jacobi(雅可比)行列式.面积元素与体积元素
6.3.1 Jacobi(雅可比)行列式的性质
6.3.2 面积元素与体积元素
第七章 线.面积分与外微分形式
7.1 数量场与矢量场
7.1.1 数量场的等值面与梯度
7.1.2 矢量场的流线
7.2 曲线积力
7.2.1 第一种曲线积分(关于弧长的曲线积分)
7.2.2 第一种曲线积分的应用(旋转曲面的面积)
7.2.3 第二种曲线积分(关于弧长元素投影的积分)
7.2.4 第二种曲线积分的计算方法
7.2.5 两种曲线积分的关系
7.2.6 矢量场的环流量,矢量的曲线积分
7.3 曲面积分
7.3.1 第一种曲面积分(关于面积元素的曲面积分)
7.3.2 矢量场的通量,第二种曲面积分(关于面积元素投影的积分)
7.3.3 第二种曲面积分的计算方法
7.4 Stokes公式
7.4.1 Green公式
7.4.2 Gauss公式.散度
7.4.3 Stokes公式.旋度
7.5 全微分与线积分
7.5.1 与途径无关的曲线积分
7.5.2 有势场
7.5.3 管型场
7.6 外微分形式
7.6.1 外乘积.外微分形式
7.6.2 外微分运算Poincare引理及其逆
7.6.3 梯度.旋度与散度的数学意义
7.6.4 多变量微积分的基本定理(Stokes公式)
第八章 多变量微积分的一些应用
8.1 Taylor(泰勒)展开与极值问题
8.1.1 多变量函数的Taylor展开
8.1.2 多变量函数的极值问题
8.1.3 条件极值问题
8.2 物理上的应用举例
8.2.1 重心.转动惯量与引力
8.2.2 流体动力学的完全方程组
8.2.3 声的传播
8.2.4 热的传导
第九章 ε-δ语言
9.1 数列极限的ε-N语言
9.1.1 数列极限的定义
9.1.2 数列极限的一些性质
9.1.3 极限存在的判别准则
9.2 函数连续性的ε-δ语言
9.2.1 连续趋限
9.2.2 连续函数的定义
9.2.3 连续函数的一些基本性质
9.2.4 函数的一致连续性
9.3 定积分的存在性
9.3.1 Darboux和
9.3.2 连续函数的町积性
9.3.3 定积分概念的推广
第十章 无穷级数与无穷积分
10.1 数项级数
10.1.1 基本概念
10.1.2 一些收敛判别法
10.1.3 条件收敛级数
10.2 函数项级数
10.2.1 无穷次相加产生的问题
10.2.2 一致收敛函数列
10.2.3 一致收敛函数项级数
10.2.4 隐函数存在定理
10.2.5 常微分方程解的存在性与唯一性
10.3 幂级数与Taylor级数
10.3.1 幂级数的收敛半径
10.3.2 幂级数的性质
10.3.3 Taylor级数
10.3.4 幂级数的应用
10.4 无穷积分与含参变量积分
10.4.1 无穷积分的收敛判别法
10.4.2 含参变量的积分
10.4.3 含参变量的无穷积分
10.4.4 几个重要的无穷积分
第十一章 Follrier级数与Fourier积分
11.1 Fourier级数
11.1.1 三角函数系的正交性
11.1.2 Bessel不等式
11.1.3 Fourier级数的收敛判别法
11.2 Fourier积分
11.2.1 Fourier积分
11.2.2 Fourier变换
11.2.3 Fourier变换的应用
11.2.4 高维Fourier变换
习题答案
· · · · · ·

精彩摘录

……至于1965年我对微积分这门学科与这门课程的想法与看法是什么?我于1965年写了一篇短文,题为《对高等数学课程改革的一些尝试》,刊登在《自然辩证法通讯》1966年第一期上,对此作了一个十分简要的说明,这当然不可能引起人们的注意。直到30年后的1995年,我在中国科学技术大学数学系的一次教学研讨会上,讲了为何30年前我要写这本微积分教材以及对微积分这门学科、这门课程的一些看法与想法时,大多数教员说从未听过。后来我又在多次有关会议及多所大学讲了这个课题,在同行们的鼓励下,以1966年刊登在《自然辩证法通讯》上那篇短文为基础,加以扩展与充实,写成了一本很小的小册子《话说微积分》,于1998年由中国科学技术大学出版社出版。此书后来流传较广,引起了不少人的关注。我的另一本小书《微积分杂谈》,于2002年由科学技术文献出版社出版,这将我那些年刊登过的有关对微积分的论述的文章汇集而成。2002年,陈省身教授嘱咐我到天津南开大学讲微积分,共讲了16个学时,2003年我在丘成桐教授创办的浙江大学数学科学研究中心工作期间,又作了微积分的系统讲演,共10个学时,2004年在中国科学技术大学作了20学时的微积分的系统讲演。这三处演讲,听众都有数百人不等。在这三次演讲的基础上,写了《微积分五讲》这本小书,由科学出版社于2004年出版。这三本小书都是从不同角度,不同程度上来阐述我对微积分这门学科、这门课程的看法与想法。也是阐述我撰写本书的主导思想。这三本小书分别产生了不同影响,受到了较为普遍的关注。我要深切感谢陈省身教授,承蒙塔肯定了我对微积分的一些认识,还嘱咐我到天津去讲微积分。他对我的多次有关数学,尤其是微积分的谈话,使我深受教育,得益匪浅,例如:他十分深刻地指出了,多变量微积分与单变量微积分的根本差别在于前者有外微分形式。尤其重要的是,正是由于他的大力倡导,用...

——引自章节:第四版前言


最后必须申明,这一节的着眼点不是数学上的严格,而是希望对于外微分形式有一个比较直观的了解,在这个了解的基础上,可以用来加深对以往学过的内容有一个比较深入的本质的认识,从而搞清楚在高维空间中微分与积分这对矛盾是如何体现的.有了这一节的认识,再来学习严格的用外微分形式来写的多变量微积分【1】大概是不会有多大困难了.有了对高维空间中的微分与积分如何成为一对矛盾的认识以后,再回过头来看第六、七章的内容可以更清楚了.限于篇幅,不在此一一详述了,读者可以按照第一至四章的系统自己好好想一想.最后还要强调的是:这里所说的Stokes公式是微积分的顶峰.从理论上讲,这是微积分的终点,也是微积分从古典走向现代的入口处.在现代数学中,微积分的各种定理中,这条定理也许是用得最多定理之一.在数学上,这是一条少有的简洁、美丽而深刻的定理.

——引自第334页

相关推荐

微信二维码