Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning

作者:Christopher Bishop

出版社:Springer

出版年:2007-10-1

评分:9.5

ISBN:9780387310732

所属分类:行业好书

书刊介绍

内容简介

The dramatic growth in practical applications for machine learning over the last ten years has been accompanied by many important developments in the underlying algorithms and techniques. For example, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic techniques. The practical applicability of Bayesian methods has been greatly enhanced by the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation, while new models based on kernels have had a significant impact on both algorithms and applications.

This completely new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

The book is suitable for courses on machine learning, statistics, computer science, signal processing, computer vision, data mining, and bioinformatics. Extensive support is provided for course instructors, including more than 400 exercises, graded according to difficulty. Example solutions for a subset of the exercises are available from the book web site, while solutions for the remainder can be obtained by instructors from the publisher. The book is supported by a great deal of additional material, and the reader is encouraged to visit the book web site for the latest information.

作品目录

1 Introduction 1
1.1 Example: Polynomial Curve Fitting . . . . . . . . . . . . . . . . . 4
1.2 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.1 Probability densities . . . . . . . . . . . . . . . . . . . . . 17
1.2.2 Expectations and covariances . . . . . . . . . . . . . . . . 19
1.2.3 Bayesian probabilities . . . . . . . . . . . . . . . . . . . . 21
1.2.4 The Gaussian distribution . . . . . . . . . . . . . . . . . . 24
1.2.5 Curve fitting re-visited . . . . . . . . . . . . . . . . . . . . 28
1.2.6 Bayesian curve fitting . . . . . . . . . . . . . . . . . . . . 30
1.3 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.4 The Curse of Dimensionality . . . . . . . . . . . . . . . . . . . . . 33
1.5 Decision Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.5.1 Minimizing the misclassification rate . . . . . . . . . . . . 39
1.5.2 Minimizing the expected loss . . . . . . . . . . . . . . . . 41
1.5.3 The reject option . . . . . . . . . . . . . . . . . . . . . . . 42
1.5.4 Inference and decision . . . . . . . . . . . . . . . . . . . . 42
1.5.5 Loss functions for regression . . . . . . . . . . . . . . . . . 46
1.6 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.6.1 Relative entropy and mutual information . . . . . . . . . . 55
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2 Probability Distributions 67
2.1 Binary Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.1.1 The beta distribution . . . . . . . . . . . . . . . . . . . . . 71
2.2 Multinomial Variables . . . . . . . . . . . . . . . . . . . . . . . . 74
2.2.1 The Dirichlet distribution . . . . . . . . . . . . . . . . . . . 76
2.3 The Gaussian Distribution . . . . . . . . . . . . . . . . . . . . . . 78
2.3.1 Conditional Gaussian distributions . . . . . . . . . . . . . . 85
2.3.2 Marginal Gaussian distributions . . . . . . . . . . . . . . . 88
2.3.3 Bayes’ theorem for Gaussian variables . . . . . . . . . . . . 90
2.3.4 Maximum likelihood for the Gaussian . . . . . . . . . . . . 93
2.3.5 Sequential estimation . . . . . . . . . . . . . . . . . . . . . 94
2.3.6 Bayesian inference for the Gaussian . . . . . . . . . . . . . 97
2.3.7 Student’s t-distribution . . . . . . . . . . . . . . . . . . . . 102
2.3.8 Periodic variables . . . . . . . . . . . . . . . . . . . . . . . 105
2.3.9 Mixtures of Gaussians . . . . . . . . . . . . . . . . . . . . 110
2.4 The Exponential Family . . . . . . . . . . . . . . . . . . . . . . . 113
2.4.1 Maximum likelihood and sufficient statistics . . . . . . . . 116
2.4.2 Conjugate priors . . . . . . . . . . . . . . . . . . . . . . . 117
2.4.3 Noninformative priors . . . . . . . . . . . . . . . . . . . . 117
2.5 Nonparametric Methods . . . . . . . . . . . . . . . . . . . . . . . 120
2.5.1 Kernel density estimators . . . . . . . . . . . . . . . . . . . 122
2.5.2 Nearest-neighbour methods . . . . . . . . . . . . . . . . . 124
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3 Linear Models for Regression 137
3.1 Linear Basis Function Models . . . . . . . . . . . . . . . . . . . . 138
3.1.1 Maximum likelihood and least squares . . . . . . . . . . . . 140
3.1.2 Geometry of least squares . . . . . . . . . . . . . . . . . . 143
3.1.3 Sequential learning . . . . . . . . . . . . . . . . . . . . . . 143
3.1.4 Regularized least squares . . . . . . . . . . . . . . . . . . . 144
3.1.5 Multiple outputs . . . . . . . . . . . . . . . . . . . . . . . 146
3.2 The Bias-Variance Decomposition . . . . . . . . . . . . . . . . . . 147
3.3 Bayesian Linear Regression . . . . . . . . . . . . . . . . . . . . . 152
3.3.1 Parameter distribution . . . . . . . . . . . . . . . . . . . . 153
3.3.2 Predictive distribution . . . . . . . . . . . . . . . . . . . . 156
3.3.3 Equivalent kernel . . . . . . . . . . . . . . . . . . . . . . . 157
3.4 Bayesian Model Comparison . . . . . . . . . . . . . . . . . . . . . 161
3.5 The Evidence Approximation . . . . . . . . . . . . . . . . . . . . 165
3.5.1 Evaluation of the evidence function . . . . . . . . . . . . . 166
3.5.2 Maximizing the evidence function . . . . . . . . . . . . . . 168
3.5.3 Effective number of parameters . . . . . . . . . . . . . . . 170
3.6 Limitations of Fixed Basis Functions . . . . . . . . . . . . . . . . 172
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
4 Linear Models for Classification 179
4.1 Discriminant Functions . . . . . . . . . . . . . . . . . . . . . . . . 181
4.1.1 Two classes . . . . . . . . . . . . . . . . . . . . . . . . . . 181
4.1.2 Multiple classes . . . . . . . . . . . . . . . . . . . . . . . . 182
4.1.3 Least squares for classification . . . . . . . . . . . . . . . . 184
4.1.4 Fisher’s linear discriminant . . . . . . . . . . . . . . . . . . 186
4.1.5 Relation to least squares . . . . . . . . . . . . . . . . . . . 189
4.1.6 Fisher’s discriminant for multiple classes . . . . . . . . . . 191
4.1.7 The perceptron algorithm . . . . . . . . . . . . . . . . . . . 192
4.2 Probabilistic Generative Models . . . . . . . . . . . . . . . . . . . 196
4.2.1 Continuous inputs . . . . . . . . . . . . . . . . . . . . . . 198
4.2.2 Maximum likelihood solution . . . . . . . . . . . . . . . . 200
4.2.3 Discrete features . . . . . . . . . . . . . . . . . . . . . . . 202
4.2.4 Exponential family . . . . . . . . . . . . . . . . . . . . . . 202
4.3 Probabilistic Discriminative Models . . . . . . . . . . . . . . . . . 203
4.3.1 Fixed basis functions . . . . . . . . . . . . . . . . . . . . . 204
4.3.2 Logistic regression . . . . . . . . . . . . . . . . . . . . . . 205
4.3.3 Iterative reweighted least squares . . . . . . . . . . . . . . 207
4.3.4 Multiclass logistic regression . . . . . . . . . . . . . . . . . 209
4.3.5 Probit regression . . . . . . . . . . . . . . . . . . . . . . . 210
4.3.6 Canonical link functions . . . . . . . . . . . . . . . . . . . 212
4.4 The Laplace Approximation . . . . . . . . . . . . . . . . . . . . . 213
4.4.1 Model comparison and BIC . . . . . . . . . . . . . . . . . 216
4.5 Bayesian Logistic Regression . . . . . . . . . . . . . . . . . . . . 217
4.5.1 Laplace approximation . . . . . . . . . . . . . . . . . . . . 217
4.5.2 Predictive distribution . . . . . . . . . . . . . . . . . . . . 218
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
5 Neural Networks 225
5.1 Feed-forward Network Functions . . . . . . . . . . . . . . . . . . 227
5.1.1 Weight-space symmetries . . . . . . . . . . . . . . . . . . 231
5.2 Network Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
5.2.1 Parameter optimization . . . . . . . . . . . . . . . . . . . . 236
5.2.2 Local quadratic approximation . . . . . . . . . . . . . . . . 237
5.2.3 Use of gradient information . . . . . . . . . . . . . . . . . 239
5.2.4 Gradient descent optimization . . . . . . . . . . . . . . . . 240
5.3 Error Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . 241
5.3.1 Evaluation of error-function derivatives . . . . . . . . . . . 242
5.3.2 A simple example . . . . . . . . . . . . . . . . . . . . . . 245
5.3.3 Efficiency of backpropagation . . . . . . . . . . . . . . . . 246
5.3.4 The Jacobian matrix . . . . . . . . . . . . . . . . . . . . . 247
5.4 The Hessian Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 249
5.4.1 Diagonal approximation . . . . . . . . . . . . . . . . . . . 250
5.4.2 Outer product approximation . . . . . . . . . . . . . . . . . 251
5.4.3 Inverse Hessian . . . . . . . . . . . . . . . . . . . . . . . . 252
5.4.4 Finite differences . . . . . . . . . . . . . . . . . . . . . . . 252
5.4.5 Exact evaluation of the Hessian . . . . . . . . . . . . . . . 253
5.4.6 Fast multiplication by the Hessian . . . . . . . . . . . . . . 254
5.5 Regularization in Neural Networks . . . . . . . . . . . . . . . . . 256
5.5.1 Consistent Gaussian priors . . . . . . . . . . . . . . . . . . 257
5.5.2 Early stopping . . . . . . . . . . . . . . . . . . . . . . . . 259
5.5.3 Invariances . . . . . . . . . . . . . . . . . . . . . . . . . . 261
5.5.4 Tangent propagation . . . . . . . . . . . . . . . . . . . . . 263
5.5.5 Training with transformed data . . . . . . . . . . . . . . . . 265
5.5.6 Convolutional networks . . . . . . . . . . . . . . . . . . . 267
5.5.7 Soft weight sharing . . . . . . . . . . . . . . . . . . . . . . 269
5.6 Mixture Density Networks . . . . . . . . . . . . . . . . . . . . . . 272
5.7 Bayesian Neural Networks . . . . . . . . . . . . . . . . . . . . . . 277
5.7.1 Posterior parameter distribution . . . . . . . . . . . . . . . 278
5.7.2 Hyperparameter optimization . . . . . . . . . . . . . . . . 280
5.7.3 Bayesian neural networks for classification . . . . . . . . . 281
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
6 Kernel Methods 291
6.1 Dual Representations . . . . . . . . . . . . . . . . . . . . . . . . . 293
6.2 Constructing Kernels . . . . . . . . . . . . . . . . . . . . . . . . . 294
6.3 Radial Basis Function Networks . . . . . . . . . . . . . . . . . . . 299
6.3.1 Nadaraya-Watson model . . . . . . . . . . . . . . . . . . . 301
6.4 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 303
6.4.1 Linear regression revisited . . . . . . . . . . . . . . . . . . 304
6.4.2 Gaussian processes for regression . . . . . . . . . . . . . . 306
6.4.3 Learning the hyperparameters . . . . . . . . . . . . . . . . 311
6.4.4 Automatic relevance determination . . . . . . . . . . . . . 312
6.4.5 Gaussian processes for classification . . . . . . . . . . . . . 313
6.4.6 Laplace approximation . . . . . . . . . . . . . . . . . . . . 315
6.4.7 Connection to neural networks . . . . . . . . . . . . . . . . 319
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
7 Sparse Kernel Machines 325
7.1 Maximum Margin Classifiers . . . . . . . . . . . . . . . . . . . . 326
7.1.1 Overlapping class distributions . . . . . . . . . . . . . . . . 331
7.1.2 Relation to logistic regression . . . . . . . . . . . . . . . . 336
7.1.3 Multiclass SVMs . . . . . . . . . . . . . . . . . . . . . . . 338
7.1.4 SVMs for regression . . . . . . . . . . . . . . . . . . . . . 339
7.1.5 Computational learning theory . . . . . . . . . . . . . . . . 344
7.2 Relevance Vector Machines . . . . . . . . . . . . . . . . . . . . . 345
7.2.1 RVM for regression . . . . . . . . . . . . . . . . . . . . . . 345
7.2.2 Analysis of sparsity . . . . . . . . . . . . . . . . . . . . . . 349
7.2.3 RVM for classification . . . . . . . . . . . . . . . . . . . . 353
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
8 Graphical Models 359
8.1 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 360
8.1.1 Example: Polynomial regression . . . . . . . . . . . . . . . 362
8.1.2 Generative models . . . . . . . . . . . . . . . . . . . . . . 365
8.1.3 Discrete variables . . . . . . . . . . . . . . . . . . . . . . . 366
8.1.4 Linear-Gaussian models . . . . . . . . . . . . . . . . . . . 370
8.2 Conditional Independence . . . . . . . . . . . . . . . . . . . . . . 372
8.2.1 Three example graphs . . . . . . . . . . . . . . . . . . . . 373
8.2.2 D-separation . . . . . . . . . . . . . . . . . . . . . . . . . 378
8.3 Markov Random Fields . . . . . . . . . . . . . . . . . . . . . . . 383
8.3.1 Conditional independence properties . . . . . . . . . . . . . 383
8.3.2 Factorization properties . . . . . . . . . . . . . . . . . . . 384
8.3.3 Illustration: Image de-noising . . . . . . . . . . . . . . . . 387
8.3.4 Relation to directed graphs . . . . . . . . . . . . . . . . . . 390
8.4 Inference in Graphical Models . . . . . . . . . . . . . . . . . . . . 393
8.4.1 Inference on a chain . . . . . . . . . . . . . . . . . . . . . 394
8.4.2 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
8.4.3 Factor graphs . . . . . . . . . . . . . . . . . . . . . . . . . 399
8.4.4 The sum-product algorithm . . . . . . . . . . . . . . . . . . 402
8.4.5 The max-sum algorithm . . . . . . . . . . . . . . . . . . . 411
8.4.6 Exact inference in general graphs . . . . . . . . . . . . . . 416
8.4.7 Loopy belief propagation . . . . . . . . . . . . . . . . . . . 417
8.4.8 Learning the graph structure . . . . . . . . . . . . . . . . . 418
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
9 Mixture Models and EM 423
9.1 K-means Clustering . . . . . . . . . . . . . . . . . . . . . . . . . 424
9.1.1 Image segmentation and compression . . . . . . . . . . . . 428
9.2 Mixtures of Gaussians . . . . . . . . . . . . . . . . . . . . . . . . 430
9.2.1 Maximum likelihood . . . . . . . . . . . . . . . . . . . . . 432
9.2.2 EM for Gaussian mixtures . . . . . . . . . . . . . . . . . . 435
9.3 An Alternative View of EM . . . . . . . . . . . . . . . . . . . . . 439
9.3.1 Gaussian mixtures revisited . . . . . . . . . . . . . . . . . 441
9.3.2 Relation to K-means . . . . . . . . . . . . . . . . . . . . . 443
9.3.3 Mixtures of Bernoulli distributions . . . . . . . . . . . . . . 444
9.3.4 EM for Bayesian linear regression . . . . . . . . . . . . . . 448
9.4 The EM Algorithm in General . . . . . . . . . . . . . . . . . . . . 450
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
10 Approximate Inference 461
10.1 Variational Inference . . . . . . . . . . . . . . . . . . . . . . . . . 462
10.1.1 Factorized distributions . . . . . . . . . . . . . . . . . . . . 464
10.1.2 Properties of factorized approximations . . . . . . . . . . . 466
10.1.3 Example: The univariate Gaussian . . . . . . . . . . . . . . 470
10.1.4 Model comparison . . . . . . . . . . . . . . . . . . . . . . 473
10.2 Illustration: Variational Mixture of Gaussians . . . . . . . . . . . . 474
10.2.1 Variational distribution . . . . . . . . . . . . . . . . . . . . 475
10.2.2 Variational lower bound . . . . . . . . . . . . . . . . . . . 481
10.2.3 Predictive density . . . . . . . . . . . . . . . . . . . . . . . 482
10.2.4 Determining the number of components . . . . . . . . . . . 483
10.2.5 Induced factorizations . . . . . . . . . . . . . . . . . . . . 485
10.3 Variational Linear Regression . . . . . . . . . . . . . . . . . . . . 486
10.3.1 Variational distribution . . . . . . . . . . . . . . . . . . . . 486
10.3.2 Predictive distribution . . . . . . . . . . . . . . . . . . . . 488
10.3.3 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . 489
10.4 Exponential Family Distributions . . . . . . . . . . . . . . . . . . 490
10.4.1 Variational message passing . . . . . . . . . . . . . . . . . 491
10.5 Local Variational Methods . . . . . . . . . . . . . . . . . . . . . . 493
10.6 Variational Logistic Regression . . . . . . . . . . . . . . . . . . . 498
10.6.1 Variational posterior distribution . . . . . . . . . . . . . . . 498
10.6.2 Optimizing the variational parameters . . . . . . . . . . . . 500
10.6.3 Inference of hyperparameters . . . . . . . . . . . . . . . . 502
10.7 Expectation Propagation . . . . . . . . . . . . . . . . . . . . . . . 505
10.7.1 Example: The clutter problem . . . . . . . . . . . . . . . . 511
10.7.2 Expectation propagation on graphs . . . . . . . . . . . . . . 513
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
11 Sampling Methods 523
11.1 Basic Sampling Algorithms . . . . . . . . . . . . . . . . . . . . . 526
11.1.1 Standard distributions . . . . . . . . . . . . . . . . . . . . 526
11.1.2 Rejection sampling . . . . . . . . . . . . . . . . . . . . . . 528
11.1.3 Adaptive rejection sampling . . . . . . . . . . . . . . . . . 530
11.1.4 Importance sampling . . . . . . . . . . . . . . . . . . . . . 532
11.1.5 Sampling-importance-resampling . . . . . . . . . . . . . . 534
11.1.6 Sampling and the EM algorithm . . . . . . . . . . . . . . . 536
11.2 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . 537
11.2.1 Markov chains . . . . . . . . . . . . . . . . . . . . . . . . 539
11.2.2 The Metropolis-Hastings algorithm . . . . . . . . . . . . . 541
11.3 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
11.4 Slice Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
11.5 The Hybrid Monte Carlo Algorithm . . . . . . . . . . . . . . . . . 548
11.5.1 Dynamical systems . . . . . . . . . . . . . . . . . . . . . . 548
11.5.2 Hybrid Monte Carlo . . . . . . . . . . . . . . . . . . . . . 552
11.6 Estimating the Partition Function . . . . . . . . . . . . . . . . . . 554
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
12 Continuous Latent Variables 559
12.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . 561
12.1.1 Maximum variance formulation . . . . . . . . . . . . . . . 561
12.1.2 Minimum-error formulation . . . . . . . . . . . . . . . . . 563
12.1.3 Applications of PCA . . . . . . . . . . . . . . . . . . . . . 565
12.1.4 PCA for high-dimensional data . . . . . . . . . . . . . . . 569
12.2 Probabilistic PCA . . . . . . . . . . . . . . . . . . . . . . . . . . 570
12.2.1 Maximum likelihood PCA . . . . . . . . . . . . . . . . . . 574
12.2.2 EM algorithm for PCA . . . . . . . . . . . . . . . . . . . . 577
12.2.3 Bayesian PCA . . . . . . . . . . . . . . . . . . . . . . . . 580
12.2.4 Factor analysis . . . . . . . . . . . . . . . . . . . . . . . . 583
12.3 Kernel PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
12.4 Nonlinear Latent Variable Models . . . . . . . . . . . . . . . . . . 591
12.4.1 Independent component analysis . . . . . . . . . . . . . . . 591
12.4.2 Autoassociative neural networks . . . . . . . . . . . . . . . 592
12.4.3 Modelling nonlinear manifolds . . . . . . . . . . . . . . . . 595
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
13 Sequential Data 605
13.1 Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
13.2 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . 610
13.2.1 Maximum likelihood for the HMM . . . . . . . . . . . . . 615
13.2.2 The forward-backward algorithm . . . . . . . . . . . . . . 618
13.2.3 The sum-product algorithm for the HMM . . . . . . . . . . 625
13.2.4 Scaling factors . . . . . . . . . . . . . . . . . . . . . . . . 627
13.2.5 The Viterbi algorithm . . . . . . . . . . . . . . . . . . . . . 629
13.2.6 Extensions of the hidden Markov model . . . . . . . . . . . 631
13.3 Linear Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . 635
13.3.1 Inference in LDS . . . . . . . . . . . . . . . . . . . . . . . 638
13.3.2 Learning in LDS . . . . . . . . . . . . . . . . . . . . . . . 642
13.3.3 Extensions of LDS . . . . . . . . . . . . . . . . . . . . . . 644
13.3.4 Particle filters . . . . . . . . . . . . . . . . . . . . . . . . . 645
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646
14 Combining Models 653
14.1 Bayesian Model Averaging . . . . . . . . . . . . . . . . . . . . . . 654
14.2 Committees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655
14.3 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
14.3.1 Minimizing exponential error . . . . . . . . . . . . . . . . 659
14.3.2 Error functions for boosting . . . . . . . . . . . . . . . . . 661
14.4 Tree-based Models . . . . . . . . . . . . . . . . . . . . . . . . . . 663
14.5 Conditional Mixture Models . . . . . . . . . . . . . . . . . . . . . 666
14.5.1 Mixtures of linear regression models . . . . . . . . . . . . . 667
14.5.2 Mixtures of logistic models . . . . . . . . . . . . . . . . . 670
14.5.3 Mixtures of experts . . . . . . . . . . . . . . . . . . . . . . 672
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674
Appendix A Data Sets 677
Appendix B Probability Distributions 685
Appendix C Properties of Matrices 695
Appendix D Calculus of Variations 703
Appendix E LagrangeMultipliers 707
References 711
· · · · · ·

作者简介

Christopher M. Bishop is Deputy Director of Microsoft Research Cambridge, and holds a Chair in Computer Science at the University of Edinburgh. He is a Fellow of Darwin College Cambridge, a Fellow of the Royal Academy of Engineering, and a Fellow of the Royal Society of Edinburgh. His previous textbook "Neural Networks for Pattern Recognition" has been widely adopted.

精彩摘录

Clearly,therearemanypossibleprobabilisticstructuresthatcanbeconstructedaccordingtotheneedsofparticularapplications.Graphicalmodelsprovideageneraltechniqueformotivating,describing,andanalysingsuchstructures,andvariationalmethodsprovideapowerfulframeworkforperforminginferenceinthosemodelsforwhichexactsolutionisintractable.

——引自第635页


Afurtherissueinfindingmaximumlikelihoodsolutionsarisesfromthefactthatforanygivenmaximumlikelihoodsolution,aK-componentmixturewillhaveatotalofK!equivalentsolutionscorrespondingtotheK!waysofassigningKsetsofparameterstoKcomponents.

——引自第434页

相关推荐

微信二维码