本书是代数学基本观点的一个很好的展示。作者写这本书的想法来源于1955年他在芝加哥大学的演讲。从那时到现在代数学经历了很大的发展,该书的思想也是一直在更新,现在的这个版本是原版的修订版,称得上是一本真正的现代代数拓扑学。既可以作为教科书,也是一本很好的参考书。
本书分为三个主要部分,每部分包含三章。前三章都是在讲述基础群。**章给出其定义;第二章讲述覆盖空间;第三章发生器和关系,同时引进了多面体。四、五、六章都是在为下面章节研究同调理论做铺垫。第四章定义了同调;第五章涉及到更高层次的代数概念:上同调、上积,和上同调运算;第六章主要讲解拓扑流形。*后三章仔细研究了同调的概念。第七章介绍了同调群的基本概念;第八章将其应用于障碍理论;第九章给出了球体同调群的计算。每一个新概念的引入都会有应用实例来加深读者对它的理解。这些章节重点在于强调代数工具在几何中的应用。每章节后都有一些关于本章的练习。既有常规性的练习,又有部分是很具有激发性的,这些都可以帮助读者更好地了解本课程。
本书为全英文版。
IN THE MORE THAN TWENTY YEARS SINCE THE FIRST APPEARANCE OF Algebraic Topology the book has met with favorable response both in its use as a text and as a reference. It was the first comprehensive treatment of the fundamentals of the subject. Its continuing acceptance attests to the fact that its content and organization are still as timely as when it first appeared. Accord-ingly it has not been revised.
EFACE TO THE SECOND
SPRINGER PRINTING
IN THE MORE THAN TWENTY YEARS SINCE THE FIRST APPEARANCE OF
Algebraic Topology the book has met with favorable response both in its use
as a text and as a reference. It was the first comprehensive treatment of the
fundamentals of the subject. Its continuing acceptance attests to the fact that
its content and organization are still as timely as when it first appeared. Accord-
ingly it has not been revised.
Many of the proofs and concepts first presented in the book have become
standard and are routinely incorporated in newer books on the subject. Despite
this, Algebraic Topology remains the best complete source for the material
which every young algebraic topologist should know. Springer-Verlag is to be
commended for its willingness to keep the book in print for future topologists.
For the current printing all of the misprints known to me have been cor-
rected and the .bibliography has been updated.
Berkeley, California Edwin H. Spanier
December 1989
PⅡIRFACE
THIS BOOK IS AN EXPOSITION OF THE FUNDAMENTAL IDEAS OF ALGEBRAIC
topology.1t is intended t0 be used both as a text and as a reference.Patticular
emphasis has been placed on aaturality,and the book might well have been
titled Functorial Topology,.The reader iS riot assumed to have prior knowledge
ofalgebraic topology,but he is assumed to know something of general topology
alld algebra and to be mathcmatically SOphisticated. Specinc prerequisite
material is brieHy summarized iIl the Introdnction.
sirice A lgebraic Topolgy is a text,the exposit/on in the eadier chapters
is a g00d deal slower than in the later chapters.The reader is exDected t0
develop facility for the subjectashe progresses,and accordingly,the further
he is in the b00k,the more he iS called upon to fill in details of prooffs.
Because it is alSO intended as a reference,some attempt has been made to
include basic concepts whetller ahey are used in the book or not.As a result,
there is more material than is usuallygiyen in courses on出e subject.
The material is organized into three main parts,each part being made up
0f three chapters.Each chapter is broken into several sectiOhS which treat
individual topics with some degree of thoroughness and are the basic organi-
zational units of the text. In the first three chapters the underlying theme is
the fundamental group. This is defined in Chapter One, applied in Chapter
Two in the study of covering spaces, and described by means of generators
and relations in Chapter Three, where polyhedra are introduced. The concept
of functor and its applicability to topology are stressed here to motivate
interest in the other functors of algebraic topology.
Chapters Four, Five, and Six are devoted to homology theory. Chapter
Four contains'the first definitions of homology, Chapter Five contains further
algebraic concepts such as cohomology, cup products, and cohomology oper-
ations, and Chapter Six contains a study of topological manifolds. With each
new concept introduced applications are presented to illustrate its utility:.
The last three chapters study homotopy theory. Basic facts about homo-
topy groups are considered in Chapter Seven, applications to obstruction
theory are presented in Chap
雅思口语900句(赠送MP3光盘一张) 本书特色 900句口语财富,让口语不再贫穷!覆盖*全面的雅思口语话题;权威分类,让搜索一目了然;句句经典,倡导口语“拿来...
人教爱阅英语读本小学7 本书特色 人民教育出版社联合美国著名儿童读物出版社 Highlights 为全国小学生倾情打造、奉献的英语分级读物!我们希望孩子享受英语...
普希金童话 内容简介 《语文必读丛书》第二辑和广大青少年朋友见面了!这一辑中,有适合小学生阅读的中外童话、民间故事和中国古代诗歌;有适合初中和高中学生阅读的中国...
平面解析几何方法与研究-第3卷 内容简介 《平面解析几何方法与研究》一书全面系统地介绍了欧氏平面解析几何的有关重要内容,是作者参考了多种有关论若并结合自己的教学...
趣趣留心-写作真的很好玩 本书特色 *受欢迎的青少年课外读物,有效解决作文中遇到的各种难题。让人耳目一新的作文技巧。趣趣留心-写作真的很好玩 内容简介 ...
《极简Spring Cloud实战》内容简介:本书力求既全面又精巧,体现在以下方面:揭示Spring Cloud的核心特点、关键原理与应用,对于Sp
科学探索丛书物理科学--Matter,Matter Everywere物质无处不在 内容简介 如果你希望读到地道的英语,在享受英语阅读的乐趣的同时又能增长知识、...
作品目录目录第1章 算术 11.1 基本运算法则 11.1.1 数 11.1.2 证明的方法 51.1.3 和与积 71.1.4 幂、根与对数 91.1.5 代...
液体喷雾学 本书特色 曹建明所著的《液体喷雾学》是一部专著,主要反映了作者本人近年来的研究成果,同时还总结和译述了国内外的部分研究成果。本书一是供研究生或高年级...
伊利亚·普里戈金(1917—2003),耗散结构理论创立者,1977年诺贝尔化学奖得主,比利时皇家研究院荣誉院士,美国科学院外籍院士,曾获53个荣誉学位。著有《...
中学生作文大百科万能宝典满分升级 本书特色 《中学生作文大百科万能宝典:满分升级》:全国的语文老师到底渴望拥有一本怎样的作文书呢?全国的中学生到底应该常备一本怎...
新编大学德语系列新编大学德语第2版(教师手册1)(18新) 本书特色 《新编大学德语(第二版)教师手册1》是为了让使用《新编大学德语(第二版)学生用书1》的教师...
小学奥数四年级-数学思维训练汇编 本书特色 《学而思培优:数学思维训练汇编·小学奥数4年级》由电子工业出版社出版。小学奥数四年级-数学思维训练汇编 内容简介 《...
几何原本 本书特色《几何原本》成书于公元前三百年左右,全书十三卷,是欧几里得将古希腊数学集大成的著作,包括了希腊科学数学家:泰利斯、毕达哥拉斯、希波克拉提斯等人...
小学英语语法训练2000题-提高版 内容简介 《小学英语语法训练2000题(提高版)》对小学阶段所涉及的语法知识按照学生的认知规律进行了整理,对每个语法现象和用...
疯狂英语单词王2000-含MP3光盘 目录 day01 爷爷来了day02 恶魔机器人出现day03 滨逊啊,快跑! day04 小不点儿少年壮士day...
中国史学思想史 本书特色 史学思想史是史学史的一项分支学科,它和其它分支学科一样,都在起步阶段。 从60年代起,吴怀祺同志就有志于中国史学史的研究。十余年以后,...
绿山墙的安妮 本书特色 《绿山墙的安妮》是一个孤儿长大成人的故事。这是一部甜蜜的描写儿童生活的小说,是一本感动家长、老师和孩子的心灵读本。马修和玛瑞娜兄妹俩在绿...
全世界都在玩的有趣数学题 内容简介 本书作者精于逻辑谜题和数学游戏。他从小就学会小国际象棋,以后的人生中都持续下棋活动,还使得他对数学和智力游戏的设计有特别强的...
《坚持把服务中华民族伟大复兴作为教育的重要使命》内容简介:教育是国之大计、党之大计。实现“两个一百年”奋斗目标、实现中华民