本书是代数学基本观点的一个很好的展示。作者写这本书的想法来源于1955年他在芝加哥大学的演讲。从那时到现在代数学经历了很大的发展,该书的思想也是一直在更新,现在的这个版本是原版的修订版,称得上是一本真正的现代代数拓扑学。既可以作为教科书,也是一本很好的参考书。
本书分为三个主要部分,每部分包含三章。前三章都是在讲述基础群。**章给出其定义;第二章讲述覆盖空间;第三章发生器和关系,同时引进了多面体。四、五、六章都是在为下面章节研究同调理论做铺垫。第四章定义了同调;第五章涉及到更高层次的代数概念:上同调、上积,和上同调运算;第六章主要讲解拓扑流形。*后三章仔细研究了同调的概念。第七章介绍了同调群的基本概念;第八章将其应用于障碍理论;第九章给出了球体同调群的计算。每一个新概念的引入都会有应用实例来加深读者对它的理解。这些章节重点在于强调代数工具在几何中的应用。每章节后都有一些关于本章的练习。既有常规性的练习,又有部分是很具有激发性的,这些都可以帮助读者更好地了解本课程。
本书为全英文版。
IN THE MORE THAN TWENTY YEARS SINCE THE FIRST APPEARANCE OF Algebraic Topology the book has met with favorable response both in its use as a text and as a reference. It was the first comprehensive treatment of the fundamentals of the subject. Its continuing acceptance attests to the fact that its content and organization are still as timely as when it first appeared. Accord-ingly it has not been revised.
EFACE TO THE SECOND
SPRINGER PRINTING
IN THE MORE THAN TWENTY YEARS SINCE THE FIRST APPEARANCE OF
Algebraic Topology the book has met with favorable response both in its use
as a text and as a reference. It was the first comprehensive treatment of the
fundamentals of the subject. Its continuing acceptance attests to the fact that
its content and organization are still as timely as when it first appeared. Accord-
ingly it has not been revised.
Many of the proofs and concepts first presented in the book have become
standard and are routinely incorporated in newer books on the subject. Despite
this, Algebraic Topology remains the best complete source for the material
which every young algebraic topologist should know. Springer-Verlag is to be
commended for its willingness to keep the book in print for future topologists.
For the current printing all of the misprints known to me have been cor-
rected and the .bibliography has been updated.
Berkeley, California Edwin H. Spanier
December 1989
PⅡIRFACE
THIS BOOK IS AN EXPOSITION OF THE FUNDAMENTAL IDEAS OF ALGEBRAIC
topology.1t is intended t0 be used both as a text and as a reference.Patticular
emphasis has been placed on aaturality,and the book might well have been
titled Functorial Topology,.The reader iS riot assumed to have prior knowledge
ofalgebraic topology,but he is assumed to know something of general topology
alld algebra and to be mathcmatically SOphisticated. Specinc prerequisite
material is brieHy summarized iIl the Introdnction.
sirice A lgebraic Topolgy is a text,the exposit/on in the eadier chapters
is a g00d deal slower than in the later chapters.The reader is exDected t0
develop facility for the subjectashe progresses,and accordingly,the further
he is in the b00k,the more he iS called upon to fill in details of prooffs.
Because it is alSO intended as a reference,some attempt has been made to
include basic concepts whetller ahey are used in the book or not.As a result,
there is more material than is usuallygiyen in courses on出e subject.
The material is organized into three main parts,each part being made up
0f three chapters.Each chapter is broken into several sectiOhS which treat
individual topics with some degree of thoroughness and are the basic organi-
zational units of the text. In the first three chapters the underlying theme is
the fundamental group. This is defined in Chapter One, applied in Chapter
Two in the study of covering spaces, and described by means of generators
and relations in Chapter Three, where polyhedra are introduced. The concept
of functor and its applicability to topology are stressed here to motivate
interest in the other functors of algebraic topology.
Chapters Four, Five, and Six are devoted to homology theory. Chapter
Four contains'the first definitions of homology, Chapter Five contains further
algebraic concepts such as cohomology, cup products, and cohomology oper-
ations, and Chapter Six contains a study of topological manifolds. With each
new concept introduced applications are presented to illustrate its utility:.
The last three chapters study homotopy theory. Basic facts about homo-
topy groups are considered in Chapter Seven, applications to obstruction
theory are presented in Chap
菌物学 本书特色 菌物是自然界中多样性十分丰富的一类生物,是目前生物学领域发展*快的学科之一。《菌物学》对菌物学相关概念和理论进行了详细的阐述。《菌物学》共分1...
单词我最强巅峰词汇33000 本书特色 美籍语音专家录制MP3光盘。21世纪*新*权威的考试词汇书!单词我最强巅峰词汇33000 内容简介 本书的N大特色:从词...
偏微分方程的并行算法 国外数学名著系列 影印本 14 本书特色 该书学术水平很高,可供数学系研究生、应用数学工作者和科研人员阅读。偏微分方程的并行算法 国外数学...
高考英语阅读与完形 本书特色 《高考英语阅读与完形》为资深名师、新东方20周年功勋教师高亮老师融入多年教学经验和研究心得的力作,是高考阅读和完形两大题型的辅导用...
高等数学 本书特色 为了更好地适应高等职业学校培养高等技术应用型人才的需要,提高学生的基本素质和教学质量,解决高等职业教育这一层次《高等教学》课程的教材问题,我...
初中物理实验全能突破秘籍-适用于初二.初三年级 本书特色它——中考状元、优秀学生的**宝典 它——方法归纳、技巧提炼的解题秘籍 它——学而思教育**教师经验方法...
中国民间故事-读名著.学语文-增订版 本书特色 本书包含了“白娘子传奇”“牛郎和织女”“孟姜女”“梁山伯与祝英台”等二十多个在中国民间广泛流传的故事,通过这些经...
司法制度概论(第二版)(21世纪法学系列教材) 内容简介 《司法制度概论(第2版)》针对法律专业学生的实际需要,系统介绍现代司法的基本原理和具体制度。内容包括:...
《须臾,锦时》内容简介:本书以农历12个月份为线索,分为12个章节,以图配文的形式展示祖国大地一年四季的风物变化,自然更迭,花
《哈佛的变革》内容简介:本书综合展现并客观分析了美国高等教育的利弊得失,论述了美国高等教育体系的特殊性、优越性以及脆弱性,
【编辑推荐】☆推理界天王长销不衰的本格推理神作☆广大推理迷呼唤良久的全新精良译本☆约翰•迪克森•卡尔,无可争议的“密室之王”☆两夺埃德加•爱伦•坡特别奖,与阿加...
TOEFL IBT词汇 词以类记(新东方) 本书特色 toefl ibt*新词汇:覆盖听说读写按学科和意群分类:细分至*小同义词区间,符合大脑分类记忆规律高频经...
现代大学英语(1)听力(2012版)附MP3光盘 内容简介 《普通高等教育"十一五" 规划教材:现代大学英语(听力1)》由金莉主编,为《现代大学英语》系列教材中...
我的朋友是老外-含光盘 本书特色 一本史无前例的“小说体”生活口语书英语口语学习的日常生活口语真经you can open your mouth now!新鲜生...
《云中谁寄锦书来(宋代合集)》内容简介:唐诗宋词,是我国文学史上的两颗明珠,璀璨夺目,也是我国文学史上永恒而无与伦比的两座
别让孩子伤在小学-2 本书特色 10’0000家长和小学老师诚意推荐!继2012畅销家教书《别让孩子伤在小学》之后,饶雪莉再度写给万千家长和老师的心里话中国式家...
新人文读.小学高年级.春天卷 本书特色 精选当代美方,弘扬人文精神,倡导自主阅读,提升写作能力。新人文读.小学高年级.春天卷 内容简介 简介博大无边的人文世界,...
义务教育小学科学课程标准解读:科学概念.术语与实验 内容简介 本书主要依据今年新颁布的小学科学课程标准,将18个核心概念进行分解,融入了所要求的科学、技术、社会...
《数学分析习题课讲义(下册)》是教育部“国家理科基地创建名牌课程项目”的研究成果,其目的是为数学分析的习题课教学提供一套具
英语大赢家:最新流行美语全情景话题320(上册)(附光盘) 本书特色 为了迎接2008年奥运会,提高全民的英语口语水平,当好东道主,石油工业出版社特组织强大的作...