本书是代数学基本观点的一个很好的展示。作者写这本书的想法来源于1955年他在芝加哥大学的演讲。从那时到现在代数学经历了很大的发展,该书的思想也是一直在更新,现在的这个版本是原版的修订版,称得上是一本真正的现代代数拓扑学。既可以作为教科书,也是一本很好的参考书。
本书分为三个主要部分,每部分包含三章。前三章都是在讲述基础群。**章给出其定义;第二章讲述覆盖空间;第三章发生器和关系,同时引进了多面体。四、五、六章都是在为下面章节研究同调理论做铺垫。第四章定义了同调;第五章涉及到更高层次的代数概念:上同调、上积,和上同调运算;第六章主要讲解拓扑流形。*后三章仔细研究了同调的概念。第七章介绍了同调群的基本概念;第八章将其应用于障碍理论;第九章给出了球体同调群的计算。每一个新概念的引入都会有应用实例来加深读者对它的理解。这些章节重点在于强调代数工具在几何中的应用。每章节后都有一些关于本章的练习。既有常规性的练习,又有部分是很具有激发性的,这些都可以帮助读者更好地了解本课程。
本书为全英文版。
IN THE MORE THAN TWENTY YEARS SINCE THE FIRST APPEARANCE OF Algebraic Topology the book has met with favorable response both in its use as a text and as a reference. It was the first comprehensive treatment of the fundamentals of the subject. Its continuing acceptance attests to the fact that its content and organization are still as timely as when it first appeared. Accord-ingly it has not been revised.
EFACE TO THE SECOND
SPRINGER PRINTING
IN THE MORE THAN TWENTY YEARS SINCE THE FIRST APPEARANCE OF
Algebraic Topology the book has met with favorable response both in its use
as a text and as a reference. It was the first comprehensive treatment of the
fundamentals of the subject. Its continuing acceptance attests to the fact that
its content and organization are still as timely as when it first appeared. Accord-
ingly it has not been revised.
Many of the proofs and concepts first presented in the book have become
standard and are routinely incorporated in newer books on the subject. Despite
this, Algebraic Topology remains the best complete source for the material
which every young algebraic topologist should know. Springer-Verlag is to be
commended for its willingness to keep the book in print for future topologists.
For the current printing all of the misprints known to me have been cor-
rected and the .bibliography has been updated.
Berkeley, California Edwin H. Spanier
December 1989
PⅡIRFACE
THIS BOOK IS AN EXPOSITION OF THE FUNDAMENTAL IDEAS OF ALGEBRAIC
topology.1t is intended t0 be used both as a text and as a reference.Patticular
emphasis has been placed on aaturality,and the book might well have been
titled Functorial Topology,.The reader iS riot assumed to have prior knowledge
ofalgebraic topology,but he is assumed to know something of general topology
alld algebra and to be mathcmatically SOphisticated. Specinc prerequisite
material is brieHy summarized iIl the Introdnction.
sirice A lgebraic Topolgy is a text,the exposit/on in the eadier chapters
is a g00d deal slower than in the later chapters.The reader is exDected t0
develop facility for the subjectashe progresses,and accordingly,the further
he is in the b00k,the more he iS called upon to fill in details of prooffs.
Because it is alSO intended as a reference,some attempt has been made to
include basic concepts whetller ahey are used in the book or not.As a result,
there is more material than is usuallygiyen in courses on出e subject.
The material is organized into three main parts,each part being made up
0f three chapters.Each chapter is broken into several sectiOhS which treat
individual topics with some degree of thoroughness and are the basic organi-
zational units of the text. In the first three chapters the underlying theme is
the fundamental group. This is defined in Chapter One, applied in Chapter
Two in the study of covering spaces, and described by means of generators
and relations in Chapter Three, where polyhedra are introduced. The concept
of functor and its applicability to topology are stressed here to motivate
interest in the other functors of algebraic topology.
Chapters Four, Five, and Six are devoted to homology theory. Chapter
Four contains'the first definitions of homology, Chapter Five contains further
algebraic concepts such as cohomology, cup products, and cohomology oper-
ations, and Chapter Six contains a study of topological manifolds. With each
new concept introduced applications are presented to illustrate its utility:.
The last three chapters study homotopy theory. Basic facts about homo-
topy groups are considered in Chapter Seven, applications to obstruction
theory are presented in Chap
猫-(英汉双语剧本) 本书特色 《猫》是一本语言诙谐易懂,很具时代特征和欣赏性的英汉双语剧本。《猫》的双语剧本不仅是音乐剧爱好者的需要,也是双语学习者的爱好。《...
Jordantheoryhasdevelopedrapidlyinthelastthreedecades,butveryfewbooksdescribeitsd...
中国新文学研究丛书:民国大学的文脉 本书特色 《民国大学的文脉》为南京大学“新文学研究丛书”中的一种。该丛书共12种,系我社与南京大学的合作项目,之前的丛书名为...
每天用英语读点学科经典 本书特色 用英文读天下读经典之书,做有根之人——金牌英语阅读力成长计划经济、金融、心理、人文、科技、艺术,你不可不知的各学科经典知识都在...
宽容:英文 本书特色 实在巧妙不过,枯燥无味的科学常识,经他那么的一写,无论大人小孩,读他书的人都觉得娓娓忘倦了。房龙的笔,有这样一种魔力,但这也不是他的特创,...
小学只考三道作文题 本书特色 小学生写不好作文一直是学生们、语文教师们和家长们头疼的问题。我想其中*大的难点是作文题目千变万化,而小学生的生活相对简单,感觉应...
古代小说论集 本书特色 全书为中国古代文学研究专家刘世德先生历年来关于古代小说的文章合集。书中对《红楼梦》《封神演义》《聊斋志异》《红楼梦》“三言二...
我的第一本日语课本-最好学的日语入门书 目录 part 1 今天的日语今天的日语日语的文字日语的发音何为日语?日语的特征part 2 基本句子基本句 1基本句 ...
大学法语简明教程(MP3版) 内容简介 简介《大学法语简明教程》是首次根据《大学法语(第二外语)教学大纲》编写的法语课本,教学对象是高等院校以法语为第二外语的本...
精选诗经与诗意画(英汉对照) 本书特色 《诗经》是中国**部诗歌总集,成书的时间大约在春秋中叶,也就是公元前6世纪左右,与古希腊的《荷马史诗》年代大体相当,初期...
希腊数学家阿波罗尼奥斯著。作者与欧几里得、阿基米德常被合称为古希腊亚历山大前期的三大数学家。本书原共8卷,卷Ⅰ~Ⅳ的希腊文
教育研究方法-第2版 本书特色 “教育研究方法”是《教师教育课程标准(试行)》“课程设置”的重要模块。本教材依据《教师教育课程标准(试行)》,精选对培养优秀教师...
初中一年级-仁华学校奥林匹克数学课本 内容简介 这套丛书是北京仁华学校的教学用书。北京仁华学校是人大附中的超常教育实验基地。其前身为北京市华罗庚学校,2003年...
Thelastonehundredyearshaveseenmanyimportantachievementsintheclassicalpartofnumbe...
写材料算怎么回事:信息写作方法论 本书特色 本书重点讲解各类单位都*常见、初学者*常写的,被称为“信息”的这种文字材料的写作技巧。主要通...
英汉植物生理生化词汇 本书特色 《英汉植物生理生化词汇》具有方便、实用的特点,是植物生产类、生物科学等专业本科生、研究生的理想工具书,同时可供从事植物生物科学的...
热爱生命:杰克·伦敦短篇小说经典 本书特色 《世界文学名著青少版·经典名著:热爱生命(杰克·伦敦短篇小说经典)》是一个桥梁,是一个引路人,当然这个“引路人”必须...
西方老故事50篇-(旧译 泰西五十轶事)-经典集锦 本书特色 本书旧译《泰西五十轶事》,曾为中国二十世纪初流行的英文读本,影响过包括著名学者季羡林在内的一代中国...
神笔马良-精读版 本书特色 《神笔马良》这本书,选录了作者的13 篇故事,每篇都富于教育意义。其中的《神笔马良正传》,描写了一个拥有神笔,充满正义、勇敢,专为穷...
吸血鬼(纯英文版) 本书特色 《床头灯英语·3000词读物(纯英文版):吸血鬼》被公认为西方文学中真正伟大的恐怖小说,并且成为学校里学术课程讨论的...