本书是代数学基本观点的一个很好的展示。作者写这本书的想法来源于1955年他在芝加哥大学的演讲。从那时到现在代数学经历了很大的发展,该书的思想也是一直在更新,现在的这个版本是原版的修订版,称得上是一本真正的现代代数拓扑学。既可以作为教科书,也是一本很好的参考书。
本书分为三个主要部分,每部分包含三章。前三章都是在讲述基础群。**章给出其定义;第二章讲述覆盖空间;第三章发生器和关系,同时引进了多面体。四、五、六章都是在为下面章节研究同调理论做铺垫。第四章定义了同调;第五章涉及到更高层次的代数概念:上同调、上积,和上同调运算;第六章主要讲解拓扑流形。*后三章仔细研究了同调的概念。第七章介绍了同调群的基本概念;第八章将其应用于障碍理论;第九章给出了球体同调群的计算。每一个新概念的引入都会有应用实例来加深读者对它的理解。这些章节重点在于强调代数工具在几何中的应用。每章节后都有一些关于本章的练习。既有常规性的练习,又有部分是很具有激发性的,这些都可以帮助读者更好地了解本课程。
本书为全英文版。
IN THE MORE THAN TWENTY YEARS SINCE THE FIRST APPEARANCE OF Algebraic Topology the book has met with favorable response both in its use as a text and as a reference. It was the first comprehensive treatment of the fundamentals of the subject. Its continuing acceptance attests to the fact that its content and organization are still as timely as when it first appeared. Accord-ingly it has not been revised.
EFACE TO THE SECOND
SPRINGER PRINTING
IN THE MORE THAN TWENTY YEARS SINCE THE FIRST APPEARANCE OF
Algebraic Topology the book has met with favorable response both in its use
as a text and as a reference. It was the first comprehensive treatment of the
fundamentals of the subject. Its continuing acceptance attests to the fact that
its content and organization are still as timely as when it first appeared. Accord-
ingly it has not been revised.
Many of the proofs and concepts first presented in the book have become
standard and are routinely incorporated in newer books on the subject. Despite
this, Algebraic Topology remains the best complete source for the material
which every young algebraic topologist should know. Springer-Verlag is to be
commended for its willingness to keep the book in print for future topologists.
For the current printing all of the misprints known to me have been cor-
rected and the .bibliography has been updated.
Berkeley, California Edwin H. Spanier
December 1989
PⅡIRFACE
THIS BOOK IS AN EXPOSITION OF THE FUNDAMENTAL IDEAS OF ALGEBRAIC
topology.1t is intended t0 be used both as a text and as a reference.Patticular
emphasis has been placed on aaturality,and the book might well have been
titled Functorial Topology,.The reader iS riot assumed to have prior knowledge
ofalgebraic topology,but he is assumed to know something of general topology
alld algebra and to be mathcmatically SOphisticated. Specinc prerequisite
material is brieHy summarized iIl the Introdnction.
sirice A lgebraic Topolgy is a text,the exposit/on in the eadier chapters
is a g00d deal slower than in the later chapters.The reader is exDected t0
develop facility for the subjectashe progresses,and accordingly,the further
he is in the b00k,the more he iS called upon to fill in details of prooffs.
Because it is alSO intended as a reference,some attempt has been made to
include basic concepts whetller ahey are used in the book or not.As a result,
there is more material than is usuallygiyen in courses on出e subject.
The material is organized into three main parts,each part being made up
0f three chapters.Each chapter is broken into several sectiOhS which treat
individual topics with some degree of thoroughness and are the basic organi-
zational units of the text. In the first three chapters the underlying theme is
the fundamental group. This is defined in Chapter One, applied in Chapter
Two in the study of covering spaces, and described by means of generators
and relations in Chapter Three, where polyhedra are introduced. The concept
of functor and its applicability to topology are stressed here to motivate
interest in the other functors of algebraic topology.
Chapters Four, Five, and Six are devoted to homology theory. Chapter
Four contains'the first definitions of homology, Chapter Five contains further
algebraic concepts such as cohomology, cup products, and cohomology oper-
ations, and Chapter Six contains a study of topological manifolds. With each
new concept introduced applications are presented to illustrate its utility:.
The last three chapters study homotopy theory. Basic facts about homo-
topy groups are considered in Chapter Seven, applications to obstruction
theory are presented in Chap
课程愿景 内容简介 本书挑战了从拉莫斯到泰勒直到今天四百多年来在西方教育思想史上一直占统治地位的单一的、主导性的课程观。它沿袭并超越了杜威的精神,创造了杜威未曾...
TheMagicofMathisthemathbookyouwishyouhadinschool.Usingadelightfulassortmentofexa...
小公子-世界少年文学精选-名家导读本 本书特色 伯内特编写的长篇小说《小公子》讲述了:薛德里和母亲一起住在纽约一条僻静的小街上,过着平静安宁的生活。突然有一天,...
作品目录第一编 学生生活第一章 幼年时代一 刘家渡二 幼年生活第二章 私塾生活一 故乡私塾二 入学的第一天三 私塾课程四 胡氏家
高考单词循环记忆 本书特色 1、这是一本快速记单词的工具书,每个单词需要掌握的知识点有单词拼写、单词词性、单词分音节、自然音标、词义以及例句。 2、用...
《三菱FX3U PLC编程及应用(视频微课版)》内容简介:本书由浅入深,系统讲解三菱PLC的基础知识、综合应用案例设计流程及设计方法,
智能信息处理技术原理与应用 本书特色 本教材的内容涉及模糊理论、数据融合、神经网络、遗传算法及传感技术等相关内容,并着重介绍数据融合技术的原理、特点及具体应用方...
《乌托邦》内容简介:《乌托邦》分为两部分,第一部分讲述了一个不合理的社会,既作者所处的英国;第二部分讲述了一个理想国度,通
我的教育思考-李镇西30年教育感悟精华 本书特色 30年真教育深层思考 数千万师生验证受益作品畅销近百万册中国苏霍姆林斯基式的教师——著名教育家苏霍姆林斯基的...
新日语能力考试N1语言知识(文字词汇.语法)-最好考前做过这些题-沪江网校超值赠送20元学习卡 内容简介 《new*好考前做过这些题:新日语能力考试n1语言知识...
组合数学-(第5版) 本书特色 本书是《组合数学(第4版)》的修订版,全书共分7章,分别是排列与组合、递推关系与母函数、容斥原理与鸽巢原理、Burnside引理...
综合英语(二)下册 内容简介 《综合英语(二)自学考试大纲》是根据1995年修订的全国高等教育自学考试英语专业考试计划的要求编写的。2000年2月英语专业委员会...
九年级-初中生天天诵读 本书特色 诵经典,描绘人生底色品美文,陶冶美好心灵本书精选经典篇目,非常适合学生朗读,帮助学生在潜移默化之中掌握传统文化知识,提升自我素...
唐璜 Don Juan 本书特色 有些书不可不熟读,不可不熟知,那就是经典。那是被岁月吹打、淘洗、风化后剩下的菁华。让自己心灵纯净,精神充实的一个熏要方式是阅读...
杜甫诗歌赏析 本书特色 马玮主编的《杜甫诗歌赏析》每首诗都设有题解,内容包括诗的类型、写作背景(或人物关系)、思想内容以及其他需要交待的内容等。每首诗都有赏析,...
《有限与超越:人的二重限制性及其平等》内容简介:作者基于系统的生命科学、认知科学知识,构建了个体生命的有限性与知识的不可遗
新编大学罗马尼亚语(第一册) 内容简介 《新编大学罗马尼亚语》是为北京外国语大学罗马尼亚语专业本科教学而编写的一部教材,共四册,供基础阶段教学使用。作为非通用语...
德国高等学校的兴衰与等级形成 本书特色 《德国高等学校的兴衰与等级形成》或将颠覆以往人们对德国高校千校一面的虚假印象,对不同历史时期的德国高校进行全面、清晰的分...
经济法-(第五版) 本书特色 本书对经济法学基本理论论述系统,全面,注意吸收学科发展**研究成果和法制建设新鲜经验。第四版2010年出版,已经三年。法律方面也有...
《云原生应用架构:微服务开发最佳实战》内容简介:传统的微服务应用正在经历着云原生技术的“洗礼”。随着该领域技术的不断变革与