本书是代数学基本观点的一个很好的展示。作者写这本书的想法来源于1955年他在芝加哥大学的演讲。从那时到现在代数学经历了很大的发展,该书的思想也是一直在更新,现在的这个版本是原版的修订版,称得上是一本真正的现代代数拓扑学。既可以作为教科书,也是一本很好的参考书。
本书分为三个主要部分,每部分包含三章。前三章都是在讲述基础群。**章给出其定义;第二章讲述覆盖空间;第三章发生器和关系,同时引进了多面体。四、五、六章都是在为下面章节研究同调理论做铺垫。第四章定义了同调;第五章涉及到更高层次的代数概念:上同调、上积,和上同调运算;第六章主要讲解拓扑流形。*后三章仔细研究了同调的概念。第七章介绍了同调群的基本概念;第八章将其应用于障碍理论;第九章给出了球体同调群的计算。每一个新概念的引入都会有应用实例来加深读者对它的理解。这些章节重点在于强调代数工具在几何中的应用。每章节后都有一些关于本章的练习。既有常规性的练习,又有部分是很具有激发性的,这些都可以帮助读者更好地了解本课程。
本书为全英文版。
IN THE MORE THAN TWENTY YEARS SINCE THE FIRST APPEARANCE OF Algebraic Topology the book has met with favorable response both in its use as a text and as a reference. It was the first comprehensive treatment of the fundamentals of the subject. Its continuing acceptance attests to the fact that its content and organization are still as timely as when it first appeared. Accord-ingly it has not been revised.
EFACE TO THE SECOND
SPRINGER PRINTING
IN THE MORE THAN TWENTY YEARS SINCE THE FIRST APPEARANCE OF
Algebraic Topology the book has met with favorable response both in its use
as a text and as a reference. It was the first comprehensive treatment of the
fundamentals of the subject. Its continuing acceptance attests to the fact that
its content and organization are still as timely as when it first appeared. Accord-
ingly it has not been revised.
Many of the proofs and concepts first presented in the book have become
standard and are routinely incorporated in newer books on the subject. Despite
this, Algebraic Topology remains the best complete source for the material
which every young algebraic topologist should know. Springer-Verlag is to be
commended for its willingness to keep the book in print for future topologists.
For the current printing all of the misprints known to me have been cor-
rected and the .bibliography has been updated.
Berkeley, California Edwin H. Spanier
December 1989
PⅡIRFACE
THIS BOOK IS AN EXPOSITION OF THE FUNDAMENTAL IDEAS OF ALGEBRAIC
topology.1t is intended t0 be used both as a text and as a reference.Patticular
emphasis has been placed on aaturality,and the book might well have been
titled Functorial Topology,.The reader iS riot assumed to have prior knowledge
ofalgebraic topology,but he is assumed to know something of general topology
alld algebra and to be mathcmatically SOphisticated. Specinc prerequisite
material is brieHy summarized iIl the Introdnction.
sirice A lgebraic Topolgy is a text,the exposit/on in the eadier chapters
is a g00d deal slower than in the later chapters.The reader is exDected t0
develop facility for the subjectashe progresses,and accordingly,the further
he is in the b00k,the more he iS called upon to fill in details of prooffs.
Because it is alSO intended as a reference,some attempt has been made to
include basic concepts whetller ahey are used in the book or not.As a result,
there is more material than is usuallygiyen in courses on出e subject.
The material is organized into three main parts,each part being made up
0f three chapters.Each chapter is broken into several sectiOhS which treat
individual topics with some degree of thoroughness and are the basic organi-
zational units of the text. In the first three chapters the underlying theme is
the fundamental group. This is defined in Chapter One, applied in Chapter
Two in the study of covering spaces, and described by means of generators
and relations in Chapter Three, where polyhedra are introduced. The concept
of functor and its applicability to topology are stressed here to motivate
interest in the other functors of algebraic topology.
Chapters Four, Five, and Six are devoted to homology theory. Chapter
Four contains'the first definitions of homology, Chapter Five contains further
algebraic concepts such as cohomology, cup products, and cohomology oper-
ations, and Chapter Six contains a study of topological manifolds. With each
new concept introduced applications are presented to illustrate its utility:.
The last three chapters study homotopy theory. Basic facts about homo-
topy groups are considered in Chapter Seven, applications to obstruction
theory are presented in Chap
TestDaF德语德福考试真题高频词汇 本书特色 理论依据:德国记忆心理学大师艾宾浩斯理论编排创新:按照德福常考主题和记忆线索分类效率优先:让考生短时间记忆*重...
2007年精编英语阅读理解220篇 本书特色 本书特点:主旨明确帮助读者提高英语阅读理解能力。难度适当略高于研究生入学英语考试阅读理解题的难度。题材广泛涉及科普...
少年维特之烦恼 本书特色 培根说过:“史鉴使人明智,诗歌使人巧慧,数学使人精细,博物使人深沉,伦理之学使人庄重。”——让我们快乐地阅读,心灵更加充实,意绪更加美...
量子纠错码 内容简介 量子纠错是量子计算和量子通信得以实现的重要保证。本书介绍量子纠错码的基本数学概念和理论、量子纠错码和经典纠错码之间的密切联系以及构作性能良...
6S管理入门教程 本书特色 6s管理是打造具有竞争力的企业、建设一流素质员工队伍的先进的基础管理手段。目前全球有65%的大型企业都在广泛地推行6s管理。针对职业...
朗文袖珍英汉双解短语动词词典 本书特色 《朗文袖珍英汉双解短语动词词典》是一部帮助读者掌握英语短语动词用法的袖珍型学习词典。朗文袖珍英汉双解短语动词词典 内容简...
远山启(1909-1979)1938年日本东北大学理学部代数学专业毕业。日本当代著名数学教育家,日本数学教育议会创办人、初代委员长,倡导改革传统的应试数学教育方...
税法学-(第五版) 本书特色 本书是一本兼具学术性和教学性的优秀教材。自本书第四版出版以来,我国的税收法律制度发生了一些变化,例如,"营改增"试点逐步扩至全国以...
李白诗歌赏析 本书特色 八十首精选名诗,注释、题解、赏析等全方位的解读内容,深入浅出的赏析文字,活泼疏朗的内文版面,精美典雅的装帧设计,足以让读者在轻松愉悦的阅...
英语短篇小说精读-英汉对照 内容简介 短篇小说内容生动、语言形象易懂,是学习英语的理想读物。阅读世界经典短篇小说,不仅能享受到故事本身所带来的快乐,领略到~种文...
玉壶清谈-英文版 本书特色 《赵启光作品:玉壶清谈》见证着中西文化的差异与发展。作为一位出身于中国书香世家的学者,作者赵启光教授深入“异乡”30年,感受着两个世...
《自主治理的可能》内容简介:临床医学研究生是医学高等教育和医学高层次人才培养的重要形式,对我国医学科技创新和医疗卫生事业发
游国恩学术论文集 内容简介 游国恩先生是海内外知名的学者,毕生从事教育工作和古典文学研究,学识渊博,著述宏富,尤以楚辞研究造诣*深。早在六十年代,中华书局即商请...
宋词三百首-语文必读经典名师解读 本书特色 经典与名著是人类文明的积累和文化思想的结晶,凝结了人类的智慧,对人类历史产生了重大的影响;经受了时间的考验,并得到了...
银风筝下的伦敦(3) 本书特色 读本定位:课外读物,分级编写,与各个年级的语文教学呼应,重在引发阅读兴趣,感受汉语之美,提升语文素养。 主要特点:选文体现经典性...
心理健康教育读本:高中一年级:下册 本书特色 心理健康教育必须要有针对性和实效性。据近年学生所咨询问题的统计分析,占**位的是人际关系问题,第二位的是学习...
能源管理概论一.二(高等教育自学考试能源管理师证书考试) 内容简介 高等教育自学考试能源管理(专科)专业课程设置总体上与全日制普通高等院校相应层次专业的要求一致...
学生书法入门-(全五册) 本书特色 ★ 16开平装,中国和平出版社出版★ 共含《颜体篇》《柳体篇》《欧体篇》《赵体篇》《硬笔篇》5册★ 讲解清晰,深入浅出,通俗...
哈克贝利.费恩历险记-跟赖世雄读名著-08-英汉对照.有声故事书-纯美朗读+逼真音效 本书特色 “跟赖世雄读名著”系列由英语大师赖世雄教授率团队呕心沥血精心改写...
藏在词语中的宝藏:4 本书特色 1. 著名儿童文学作家倾心编著,重点学校语文老师强烈推荐。小学生学习语文的*佳选择!2.告诉你藏在词语背后的故事,用故事点燃孩子...