本书是代数学基本观点的一个很好的展示。作者写这本书的想法来源于1955年他在芝加哥大学的演讲。从那时到现在代数学经历了很大的发展,该书的思想也是一直在更新,现在的这个版本是原版的修订版,称得上是一本真正的现代代数拓扑学。既可以作为教科书,也是一本很好的参考书。
本书分为三个主要部分,每部分包含三章。前三章都是在讲述基础群。**章给出其定义;第二章讲述覆盖空间;第三章发生器和关系,同时引进了多面体。四、五、六章都是在为下面章节研究同调理论做铺垫。第四章定义了同调;第五章涉及到更高层次的代数概念:上同调、上积,和上同调运算;第六章主要讲解拓扑流形。*后三章仔细研究了同调的概念。第七章介绍了同调群的基本概念;第八章将其应用于障碍理论;第九章给出了球体同调群的计算。每一个新概念的引入都会有应用实例来加深读者对它的理解。这些章节重点在于强调代数工具在几何中的应用。每章节后都有一些关于本章的练习。既有常规性的练习,又有部分是很具有激发性的,这些都可以帮助读者更好地了解本课程。
本书为全英文版。
IN THE MORE THAN TWENTY YEARS SINCE THE FIRST APPEARANCE OF Algebraic Topology the book has met with favorable response both in its use as a text and as a reference. It was the first comprehensive treatment of the fundamentals of the subject. Its continuing acceptance attests to the fact that its content and organization are still as timely as when it first appeared. Accord-ingly it has not been revised.
EFACE TO THE SECOND
SPRINGER PRINTING
IN THE MORE THAN TWENTY YEARS SINCE THE FIRST APPEARANCE OF
Algebraic Topology the book has met with favorable response both in its use
as a text and as a reference. It was the first comprehensive treatment of the
fundamentals of the subject. Its continuing acceptance attests to the fact that
its content and organization are still as timely as when it first appeared. Accord-
ingly it has not been revised.
Many of the proofs and concepts first presented in the book have become
standard and are routinely incorporated in newer books on the subject. Despite
this, Algebraic Topology remains the best complete source for the material
which every young algebraic topologist should know. Springer-Verlag is to be
commended for its willingness to keep the book in print for future topologists.
For the current printing all of the misprints known to me have been cor-
rected and the .bibliography has been updated.
Berkeley, California Edwin H. Spanier
December 1989
PⅡIRFACE
THIS BOOK IS AN EXPOSITION OF THE FUNDAMENTAL IDEAS OF ALGEBRAIC
topology.1t is intended t0 be used both as a text and as a reference.Patticular
emphasis has been placed on aaturality,and the book might well have been
titled Functorial Topology,.The reader iS riot assumed to have prior knowledge
ofalgebraic topology,but he is assumed to know something of general topology
alld algebra and to be mathcmatically SOphisticated. Specinc prerequisite
material is brieHy summarized iIl the Introdnction.
sirice A lgebraic Topolgy is a text,the exposit/on in the eadier chapters
is a g00d deal slower than in the later chapters.The reader is exDected t0
develop facility for the subjectashe progresses,and accordingly,the further
he is in the b00k,the more he iS called upon to fill in details of prooffs.
Because it is alSO intended as a reference,some attempt has been made to
include basic concepts whetller ahey are used in the book or not.As a result,
there is more material than is usuallygiyen in courses on出e subject.
The material is organized into three main parts,each part being made up
0f three chapters.Each chapter is broken into several sectiOhS which treat
individual topics with some degree of thoroughness and are the basic organi-
zational units of the text. In the first three chapters the underlying theme is
the fundamental group. This is defined in Chapter One, applied in Chapter
Two in the study of covering spaces, and described by means of generators
and relations in Chapter Three, where polyhedra are introduced. The concept
of functor and its applicability to topology are stressed here to motivate
interest in the other functors of algebraic topology.
Chapters Four, Five, and Six are devoted to homology theory. Chapter
Four contains'the first definitions of homology, Chapter Five contains further
algebraic concepts such as cohomology, cup products, and cohomology oper-
ations, and Chapter Six contains a study of topological manifolds. With each
new concept introduced applications are presented to illustrate its utility:.
The last three chapters study homotopy theory. Basic facts about homo-
topy groups are considered in Chapter Seven, applications to obstruction
theory are presented in Chap
TOEFL新托福高分一本全-超值赠送《实战演练一&二》+MP3光盘 本书特色《新托福高分一本全(附光盘及实战演练1&2)/新托福高分指南系列》主体部分由技巧篇和...
新版剑桥国际商务英语-第四版-学生用书 本书特色 本套丛书是剑桥大学考试委员会和教育部考试中心l 994年联合指定的BEC2考试配套教材。琼斯等编著的《剑桥国际...
JOLIN的6场单词派对 本书特色 随书附赠英文单词随身实用复习卡!超快乐!目睹Jolin6款*新派对造型,6场Jolin公主的真实派对故事;超神奇!学好神奇记...
如何学好英语-专家.教授谈英语学习方法 本书特色 本书收录了《英语世界》杂志创刊至今刊载的论述英语学习方法及翻译方法的文章,撰写者皆为我国英语界久负盛名的专家学...
作品目录第一部分 基础内容第一章 数与多项式第二章 行列式第三章 线性方程组第四章 矩阵的运算与相抵第五章 线性(向量)空间第
《机灵鼠秘授:小学生作文36计》内容简介:这是一本故事书,也是一本作文指导书。这本书通过十二生肖与狼、狈、豹等动物斗智斗勇的
呼兰河传 本书特色 《呼兰河传》是中国现代诗性小说的扛鼎力作,文学洛神传奇一生之文字见证,民国四大才女萧红之经典作品。这是一部充满童心、诗趣和灵感的“回忆式”长...
当代外国教育--教育改革的浪潮与趋势 内容简介 本书选择具有代表性的16个国家为对象国,以研究当代国外教育改革的理论与实践为中心,兼顾当代国外教育事业的发展及其...
优等生要活学活用唐诗100句 本书特色 本书以知性、感性、有趣的故事形式,展现老祖宗*精萃的智慧。读者不仅能清楚字词意义、作者生平,在看“名句的故事”时,还会不...
洋葱头历险记-经典文学名著金库-名师精评版 本书特色 经典名著读本,开创阅读新思路; 博采众家之长,打造点评版名著新经典。 “经典文学名著金库名师精评版”丛书根...
数理统计方法 内容简介 本书是按国家教育部“工学硕士研究生应用统计课程教学基本要求”,并结合作者多年的教学经验,为非数学类专业,特别是工科研究生编写的一本数理统...
抽象代数 内容简介 本书系统地介绍抽象代数学的基本概念和基础知识,共七章。主要内容有群、群同态与商环、域与域的扩张。本书叙述深入浅出,文字生动活泼,例题充实新颖...
临床免疫学检验 本书特色 本书是全国高等医药院校医学检验专业“十二五”规划教材。全书共有23章,主要由免疫学技术和临床免疫性疾病与检验两部分组成。免疫学技术侧重...
韦氏新世界学生词典(修订版·英汉版) 本书特色 ★ 16开精装,辽宁教育出版社2003年出版★ 主要编纂者高德曼(J.L.Goldman)和斯帕克斯(A.N. ...
巴黎圣母院——语文必读丛书 内容简介 《巴黎圣母院》是一部带有史诗意义的、有一个凄美而动人故事的小说,背影是15世纪路易十一统治下的巴黎,波希米亚女郎爱斯美拉达...
欧·亨利短篇小说选 内容简介 欧·亨利是美国*著名的短篇小说家之一,曾被评论界誉为曼哈顿桂冠散文作家和美国现代短篇小说之父。他出身于美国北卡罗来纳州格林斯波罗镇...
建筑工程施工组织与管理 本书特色 《建筑工程施工组织与管理》编写团队在编写时,坚持按照*新规范《建筑工程施工组织设计》(GB/T 50502—2009)的思想与...
自从1908年出版以来,这本书已经成为一部经典之著。一代又一代崭露头角的数学家正是通过这本书的指引,步入了数学的殿堂。在本书
《新发展格局下的金融结构优化》内容简介:本书在经济新常态下,如何发挥“金融制度”和“金融科技”两个金融供给侧结构性改革的抓
本书基于作者在国外多所著名大学研究、教学、学术交流的心得,从理念和操作的双重层次上,纵论建设一流大学的关键环节:世界一流