本书是代数学基本观点的一个很好的展示。作者写这本书的想法来源于1955年他在芝加哥大学的演讲。从那时到现在代数学经历了很大的发展,该书的思想也是一直在更新,现在的这个版本是原版的修订版,称得上是一本真正的现代代数拓扑学。既可以作为教科书,也是一本很好的参考书。
本书分为三个主要部分,每部分包含三章。前三章都是在讲述基础群。**章给出其定义;第二章讲述覆盖空间;第三章发生器和关系,同时引进了多面体。四、五、六章都是在为下面章节研究同调理论做铺垫。第四章定义了同调;第五章涉及到更高层次的代数概念:上同调、上积,和上同调运算;第六章主要讲解拓扑流形。*后三章仔细研究了同调的概念。第七章介绍了同调群的基本概念;第八章将其应用于障碍理论;第九章给出了球体同调群的计算。每一个新概念的引入都会有应用实例来加深读者对它的理解。这些章节重点在于强调代数工具在几何中的应用。每章节后都有一些关于本章的练习。既有常规性的练习,又有部分是很具有激发性的,这些都可以帮助读者更好地了解本课程。
本书为全英文版。
IN THE MORE THAN TWENTY YEARS SINCE THE FIRST APPEARANCE OF Algebraic Topology the book has met with favorable response both in its use as a text and as a reference. It was the first comprehensive treatment of the fundamentals of the subject. Its continuing acceptance attests to the fact that its content and organization are still as timely as when it first appeared. Accord-ingly it has not been revised.
EFACE TO THE SECOND
SPRINGER PRINTING
IN THE MORE THAN TWENTY YEARS SINCE THE FIRST APPEARANCE OF
Algebraic Topology the book has met with favorable response both in its use
as a text and as a reference. It was the first comprehensive treatment of the
fundamentals of the subject. Its continuing acceptance attests to the fact that
its content and organization are still as timely as when it first appeared. Accord-
ingly it has not been revised.
Many of the proofs and concepts first presented in the book have become
standard and are routinely incorporated in newer books on the subject. Despite
this, Algebraic Topology remains the best complete source for the material
which every young algebraic topologist should know. Springer-Verlag is to be
commended for its willingness to keep the book in print for future topologists.
For the current printing all of the misprints known to me have been cor-
rected and the .bibliography has been updated.
Berkeley, California Edwin H. Spanier
December 1989
PⅡIRFACE
THIS BOOK IS AN EXPOSITION OF THE FUNDAMENTAL IDEAS OF ALGEBRAIC
topology.1t is intended t0 be used both as a text and as a reference.Patticular
emphasis has been placed on aaturality,and the book might well have been
titled Functorial Topology,.The reader iS riot assumed to have prior knowledge
ofalgebraic topology,but he is assumed to know something of general topology
alld algebra and to be mathcmatically SOphisticated. Specinc prerequisite
material is brieHy summarized iIl the Introdnction.
sirice A lgebraic Topolgy is a text,the exposit/on in the eadier chapters
is a g00d deal slower than in the later chapters.The reader is exDected t0
develop facility for the subjectashe progresses,and accordingly,the further
he is in the b00k,the more he iS called upon to fill in details of prooffs.
Because it is alSO intended as a reference,some attempt has been made to
include basic concepts whetller ahey are used in the book or not.As a result,
there is more material than is usuallygiyen in courses on出e subject.
The material is organized into three main parts,each part being made up
0f three chapters.Each chapter is broken into several sectiOhS which treat
individual topics with some degree of thoroughness and are the basic organi-
zational units of the text. In the first three chapters the underlying theme is
the fundamental group. This is defined in Chapter One, applied in Chapter
Two in the study of covering spaces, and described by means of generators
and relations in Chapter Three, where polyhedra are introduced. The concept
of functor and its applicability to topology are stressed here to motivate
interest in the other functors of algebraic topology.
Chapters Four, Five, and Six are devoted to homology theory. Chapter
Four contains'the first definitions of homology, Chapter Five contains further
algebraic concepts such as cohomology, cup products, and cohomology oper-
ations, and Chapter Six contains a study of topological manifolds. With each
new concept introduced applications are presented to illustrate its utility:.
The last three chapters study homotopy theory. Basic facts about homo-
topy groups are considered in Chapter Seven, applications to obstruction
theory are presented in Chap
五年级/上册-思泉语文课本-点亮大语文 本书特色 思泉语文课本着眼于提高孩子对文学的兴趣,让孩子主动接受文学的熏陶,而不是为准备应试而进行的简单机械的字词篇章作...
秘密花园 本书特色 一个女孩在大自然的帮助下学会了怎样照顾自己身边人的故事,对我们当代的青少年有很深的教育意义,《秘密花园》不仅让他们体验大师们的经典文学作品,...
赖世雄教你唱歌学英语(中央人民广播电台英语讲座用书) 内容简介 赖世雄教授除了在英语方面有极深的造诣外,在音乐和歌曲演唱方面也很有天赋,为此,中央人民广播电台英...
落花生-青少年阅读经典文库 本书特色 《落花生》是哈尔滨出版社倾力打造的“青少年阅读经典文库”系列丛书之一。《落花生》是一本针对青少年读者的图书,作者许地山是在...
非线性动力学与混沌-翻译版.原书第2版 本书特色 本书主要面向非线性动力学与混沌领域的初学者,特别是首次选择该课程的学生。本书非常系统地给出了相关理论,从一阶微...
学生新华字典-精编大字本 本书特色 《学生新华字典》主要服务对象是中小学生以及同等文化程度的读者。按照《通用规范汉字表》收录规范汉字8 105个,标注字音、字级...
以概念为本的课程与教学:培养核心素养的绝佳实践 本书特色 在课堂上,当孩子们领悟了繁杂的学科内容背后的重大概念时,当他们形成了看待事物与现象的学科观念时,他们的...
陈超,1958年生于山西省太原市。生前为河北师范大学文学院教授,博士生导师。兼任北京大学中国新诗研究所特聘研究员,《新诗评论》编委。中国作家协会会员,河北省作家...
工程地质学-(第三版)-(赠课件) 本书特色 本书为住房城乡建设部土建类学科专业“十三五”规划教材和“十二五”普...
小学生必背古诗词100首 本书特色 本书是根据教育部*新《语文课程标准》推荐补充篇目,精选100首古诗词编撰而成。本书为照顾中低年级学生的需要,原文部分加了现代...
作文起跑线:小学生日记周记起步(1-2年级) 本书特色 本书从低年级学生学习写作的要求出发,选编了合适的精彩范文,为低年级学生提供丰富的素材,有助于拓宽其写作思...
2013-中考满分作文特辑-21版 本书特色 2013-中考满分作文特辑-21版 内容简介 申明:学习手册随书夹放,若您未收到随书附赠的学习手册,可将...
青葱岁月里.我们一起读美文-晨读.10分钟 本书特色 以“青春、爱”为主题,编者精心挑选了中外名家的七十六篇经典美文结集成册...
中级会计实务全真模拟试卷-2016年全国会计专业技术资格统一考试 本书特色 本书包括六套模拟试卷,依据高级会计师考试题型题量设置,全真模拟,帮助考生提早进入考试...
管理心理学-(第五版) 本书特色 以人为本,以德为先,人为为人,是作者苏东水教授研究东方管理的理论与实践的内核。本书汲取了西方管理学和中国传统管理思想...
很久很久以前,西南某个边陲小镇有一个可怕的传说。相传,只要集齐一百个人的头骨,研磨成灰,制成一把如玉石般滑润剔透的笛子,这把人骨笛子便有了摄取魂魄的力量。再用死...
神秘岛-中译经典文库.世界文学名著-全译本 本书特色 凡尔纳的小说启发了我的思想,使我按一定方向去幻想。——齐奥尔斯基 俄国宇航之父儒勒·凡尔纳是我一生事业的总...
大学.中庸.论语.孟子说-中英文对照版 本书特色 本书为16开大开本,是蔡志忠漫画中国传统文化经典 中英文对照版全集的一种。其将儒家文化典籍“四书”用生动的漫画...
TOEFL IBT TOEFL单词树—终极快速TOEFL单词记忆法 本书特色 重复是记忆之母!你只有不停地重复才能打败遗忘!本书背词体系设计遵循重复记忆原理,并...
《读懂孩子的心》内容简介:《读懂孩子的心》旨在帮助面对孩子依然迷茫的家长,全面了解孩子成长的规律,实现自由而有边界的教育。