离散数学

离散数学

作者:屈婉玲,耿素云,张立昂 编著

出版社:高等教育出版社

出版年:2008-03-01

评分:5分

ISBN:9787040231250

所属分类:网络科技

书刊介绍

离散数学 内容简介

本书起源于高等教育出版社1998年出版的《离散数学》,是教育部高等学校“九五”规划教材,2004年作为“十五”规划教材出版了修订版。作为“十一五”规划教材,根据教育部计算机科学与技术专业教学指导委员会提出的《计算机科学与技术专业规范》(CCC2005)的教学要求,本教材对内容进行了较多的调整与更新。
本书分为数理逻辑、集合论、代数结构、组合数学、图论、初等数论等六个部分。全书既有严谨的、系统的理论阐述,也有丰富的、面向计算机科学技术发展的应用实例,同时选配了大量的典型例题与练习。各章内容按照模块化组织,可以适应不同的教学要求。与本书配套的电子教案和习题辅导用书随后将陆续推出。
本书可以作为普通高等学校计算机科学与技术专业不同方向的本科生的离散数学教材,也可以供其他专业学生和科技人员阅读参考。

离散数学 本书特色

本书特色:
以教育部计算机科学与技术教学指导委员会制订的计算机科学与技术专业规范为指导,内容涵盖计算机科学技术中常用离散结构的数学基础。
紧密围绕离散数学的基本概念、基本理论精炼选材,体系严谨,内容丰富;面向计算机科学技术,介绍了很多离散数学在计算机科学技术中的应用。
强化描述与分析离散结构的基本方法与能力的训练,配有丰富的例题和习题;例题有针对性,分析讲解到位;习题难易结合,适合学生课后练习。
知识体系采用模块化结构,可以根据不同的教学要求进行调整;语言通俗易懂,深入浅出、突出重点、难点,提示易于出错的地方。
辅助教学资源丰富,配有用于习题课、包含上千道习题的教学辅导用书《离散数学学习指导与习题解析》,PPT电子教案,教学资源库等。

离散数学 目录

**部分数理逻辑
**章命题逻辑的基本概念
1.1命题与联结词
1.2命题公式及其赋值
习题一
第二章命题逻辑等值演算
2.1等值式
2.2析取范式与合取范式
2.3联结词的完备集
2.4可满足性问题与消解法
习题二
第三章命题逻辑的推理理论
3.1推理的形式结构
3.2自然推理系统P
习题三
第四章一阶逻辑基本概念
4.1一阶逻辑命题符号化
4.2一阶逻辑公式及其解释
习题四
第五章一阶逻辑等值演算与推理
5.1一阶逻辑等值式与置换规则
5.2一阶逻辑前束范式
5.3一阶逻辑的推理理论
习题五
第二部分集合论
第六章集合代数
6.1集合的基本概念
6.2集合的运算
6.3有穷集的计数
6.4集合恒等式
习题六
第七章二元关系
7.1有序对与笛卡儿积
7.2二元关系
7.3关系的运算
7.4关系的性质
7.5关系的闭包
7.6等价关系与划分
7.7偏序关系
习题七
第八章函数
8.1函数的定义与性质
8.2函数的复合与反函数
8.3双射函数与集合的基数
8.4一个电话系统的描述实例
习题八
第三部分代数结构
第九章代数系统
9.1二元运算及其性质
9.2代数系统
9.3代数系统的同态与同构
习题九
第十章群与环
10.1群的定义及其性质
10.2子群与群的陪集分解
10.3循环群与置换群
10.4环与域
习题十
第十一章格与布尔代数
11.1格的定义与性质
11.2分配格、有补格与布尔代数
习题十一
第四部分组合数学
第十二章基本的组合计数公式
12.1加法法则与乘法法则
12.2排列与组合
12.3二项式定理与组合恒等式
12.4多项式定理
习题十二
第十三章递推方程与生成函数
13.1递推方程的定义及实例
13.2递推方程的公式解法
13.3递推方程的其他解法
13.4生成函数及其应用
13.5指数生成函数及其应用
13.6Cata1an数与Stir1ing数
习题十三
第五部分图论
第十四章图的基本概念
14.1图
14.2通路与回路
14.3图的连通性
14.4图的矩阵表示
14.5图的运算
习题十四
第十五章欧拉图与哈密顿图
15.1欧拉图
15.2哈密顿图
15.3*短路问题与货郎担问题
习题十五
第十六章树
16.1无向树及其性质
16.2生成树
16.3根树及其应用
习题十六
第十七章平面图
17.1平面图的基本概念
17.2欧拉公式
17.3平面图的判断
17.4平面图的对偶图
习题十七
第十八章支配集、覆盖集、独立集、匹配与着色
18.1支配集、点覆盖集与点独立集
18.2边覆盖集与匹配
18.3二部图中的匹配
18.4点着色
18.5地图着色与平面图的点着色
18.6边着色
习题十八
第六部分初等数论
第十九章初等数论
19.1素数
19.2*大公约数与*小公倍数
19.3同余
19.4一次同余方程
19.5欧拉定理和费马小定理
19.6初等数论在计算机科学技术中的几个应用
习题十九
名词与术语索引
符号注释
参考文献

离散数学 节选

本教材是在《离散数学(修订版)》(耿素云、屈婉玲编著.高等教育出版社出版,2004年)的
基础上修改而成的。《离散数学》1998年作为高等教育“九五”规划教材出版,2004年以“十五”
规划教材立项进行了修订,至今也已经3年了。在近十年里,计算机科学技术有了飞速的发展,
在生产和生活的各个领域都发挥着越来越大的作用,一个崭新的信息时代正在来临。面对这样
一个巨大的变化,国内外对计算机专业教育的改革也进行了大量的研讨和有益的实践。当前,计
算机专业教育面临着更多的挑战,一方面是新技术新知识的爆炸性增长,另一方面是社会对多种
不同类型和层次的人才需求。因此有必要把培养目标和专业方向进一步细分,相关的教学计划
和课程体系也需要更新和调整。美国计算机学会的《ACM IEEE Computing Curricula 2004》就是
针对这个问题提出的系统的研究报告,我国教育部计算机科学与技术专业教学指导委员会也提
出了相应的《计算机科学与技术专业规范》(CCC2004--2005)。根据CCC2005专业规范的意见,
计算机科学与技术专业将划分为计算机科学、计算机工程、软件工程与信息技术四个专业方向,
本教材主要是根据前三个专业方向的教学要求编写的。
与修订版相比,本教材在以下内容上进行了比较大的更新:
1.根据CCC2005规范中关于离散数学核心内容的要求,对有些章节进行了调整。增加了
组合数学中关于递推方程、生成函数等组合计数方法的内容,并重点说明了这些方法在计算机算
法分析中的应用。增加了有关初等数论基础知识的介绍,并讲述了它们在计算机加密技术中的
应用。同时,删减了关于集合基数以及代数结构中群、环、域、格的部分内容。重新组织了图论中
的部分知识点,以使得整个教材的中心更突出,知识体系更清晰,知识点的分布更合理。
2.重写了数理逻辑中的一阶逻辑推理理论。
3.补充了和计算机科学技术应用背景紧密结合的实例。在语言文字方面做了进一步的加
工,同时订正了部分疏漏之处。
本教材采用模块化的结构,适用于计算机科学、计算机工程、软件工程等不同的专业方向和
不同的学校。教师可以根据自己的教学计划对相关内容进行取舍。根据一般经验,完成全部内
容的教学需要两个学期,大约108~144学时。如果只有一个学期,可以选择数理逻辑、集合论、
图论的部分章节,比如**章一第四章,第六章~第八章,第十四章~第十六章等。
与本教材配套的还有《离散数学学习指导用书与习题解析》和电子教案,随后将陆续推出,
为使用本教材的教师和学生提供参考。
本书的出版得到高等教育出版社的大力支持,也得到许多教师的帮助,特别是朱洪教授认真
审阅了书稿,提出宝贵的修改意见,对此我们表示衷心的感谢。本教材的**章~第五章、第十四
章~第十八章由耿素云完成,第六章~第十三章由屈婉玲完成,第十九章由张立昂完成。由于水
平所限,书中难免存在疏漏和不足之处,恳请读者指正。
作者
2007.10.

离散数学 作者简介

屈婉玲,1969年毕业于北京大学物理系物
理专业,现为北京大学信息科学技术学院教
授,博士生导师,中国人工智能学会离散数
学专委会委员。主要研究方向是算法设计与
分析,发表论文20余篇,出版教材、教学参
考书、译著20余本,其中包含多本国家级规
划教材和北京市精品教材。所讲授的离散数
学课程被评为国家精品课程,两次被评为北
京大学十佳教师,并获得北京市优秀教师称
号。曾主

相关推荐

微信二维码