旋量与时空-第2卷

旋量与时空-第2卷

作者:彭罗斯著

出版社:世界图书出版公司

出版年:2009-01-01

评分:5分

ISBN:9787506292603

所属分类:自然科学

书刊介绍

旋量与时空-第2卷 内容简介

this is a companion volume to our introductory work spinors and space-time, volume 1: two-spinor calculus and relativistic fields. there weattempted to demonstrate something of the power, utility and elegance of2-spinor techniques in the study of space-time structure and physical fields,and to advocate the viewpoint that spinors may lie closer to the heart of(even macroscopic) physical laws than the vectors and tensors of thestandard formalism. here we carry these ideas further and discuss someimportant new areas of application. we introduce the theory of twistorsand show how it sheds light on a number of important physical questions,one of the most noteworthy being the structure of energy-momentum/angular momentum of gravitating systems. the illumination that twistortheory brings to the discussion of such physical problems should lendfurther support to the viewpoint of an underlying spinorial structure inbasic physical laws.

旋量与时空-第2卷 本书特色

《旋论与时空》上下两卷是由Roger Penrose和Wolfgang Rindler的著作组成,介绍了2-弦量微积分、扭曲理论以及详细讲述了这些强有力的方法如何很好的运用于时空结构和性质的阐释。本书将对学习相对论、微分几何、粒子物理以及量子场论的学生以及老师都有很大的价值。本卷主要介绍时空几何中的弦量和扭曲理论,引入扭曲理论并且深入如何将扭曲理论和2-弦量应用于时空的学习。近年来,扭曲作为一种数学工具以及洞察物理理论结构的新方法得到越来越多人的青睐。本书还全面介绍了时空无限性的保形方法、时空曲率张量的弦量分类以及简述了零测地线几何。尽管这卷书接着**卷讲述时空,只要熟悉2-弦量方法完全可以独立学习这本书。

旋量与时空-第2卷 目录

preface
summary of volume i
6twistors
6.1the twistor equation and its solution space
6.2some geometrical aspects of twistor algebra
6.3twistors and angular momentum
6.4symmetric twistors and massless fields
6.5conformal killing vectors, conserved quantities and exact sequences
6.6lie derivatives of spinors
6.7particle constants; conformally invariant operators
6.8curvature and conformai rescaling
6.9local twistors
6.10 massless fields and twistor cohomoiogy
7null congruences
7.1null congruences and spin-coefficients
7.2null congruences and space-time curvature
7.3shear-free ray congruences
7.4sfrs, twistors and ray geometry
8classification of curvature tensors
8.1the null structure of the weyl spinor
8.2representation of the weyl spinor on s
8.3eigenspinors of the weyl spinor
8.4the eigenbivectors of the weyl tensor and its petrov classification
8.5geometry and symmetry of the weyl curvature
8.6curvature covariants
8.7a classification scheme for general spinors
8.8classification of the ricci spinor
9conformal infinity
9.1infinity for minkowski space
9.2compactified minkowski space
9.3complexified compactified minkowski space and twistor geometry
9.4twistor four-valuedness and the grgin index
9.5cosmological models and their twistors
9.6asymptotically simple space-times
9.7peeling properties
9.8the bms group and the structure of
9.9energy-momentum and angular momentum
9.10 bondi-sachs mass loss and positivity
appendix: spinors in n dimensions
references
subject and author index
index of symbols

相关推荐

微信二维码